(New page: {| | align="right" style="padding-right: 1em;" | CTFT of a complex exponential <div style="margin-left: 3em;"> |- |<math>X(f)= \mathcal{X}(2\pi f)=2\pi \delta (2\pi f-\omega_0)</math> |- ...)
 
Line 1: Line 1:
 
{|  
 
{|  
| align="right" style="padding-right: 1em;" | CTFT of a complex exponential <div style="margin-left: 3em;">
+
| align="left" style="padding-left: 0em;" | CTFT of a complex exponential
 
|-
 
|-
 
|<math>X(f)= \mathcal{X}(2\pi f)=2\pi \delta (2\pi f-\omega_0)</math>
 
|<math>X(f)= \mathcal{X}(2\pi f)=2\pi \delta (2\pi f-\omega_0)</math>

Revision as of 14:55, 9 September 2010

CTFT of a complex exponential
$ X(f)= \mathcal{X}(2\pi f)=2\pi \delta (2\pi f-\omega_0) $
$ Since\text{ } k\delta (kt)=\delta (t),\forall k\ne 0 $
$ X(f)=\delta (f-\frac{\mu_0}{2\pi}) $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett