Line 1: | Line 1: | ||
{| | {| | ||
|- | |- | ||
− | ! colspan="4" style="background: | + | ! colspan="4" style="background: none repeat scroll 0% 0% rgb(228, 188, 126); font-size: 110%;" | Laplace Transform Pairs and Properties |
|- | |- | ||
− | ! colspan="4" style="background: | + | ! colspan="4" style="background: none repeat scroll 0% 0% rgb(238, 238, 238);" | Definition |
+ | ! rowspan="2" | | ||
+ | ! rowspan="2" | | ||
+ | |- | ||
+ | ! colspan="2" | Laplace Transform | ||
+ | ! colspan="2" | <math>X(s)=\int_{-\infty}^\infty x(t) e^{-st}dt</math> | ||
+ | |- | ||
+ | ! colspan="2" | Inverse Laplace Transform | ||
+ | ! colspan="2" | | ||
+ | |- | ||
+ | ! colspan="4" style="background: none repeat scroll 0% 0% rgb(238, 238, 238);" | Laplace Transform Pairs | ||
! | ! | ||
! | ! | ||
Line 94: | Line 104: | ||
---- | ---- | ||
− | |||
− | [[ | + | [[ECE301|Go to the ECE 301 homepage]] |
+ | |||
+ | [[Collective Table of Formulas|Back to Collective Table]] | ||
[[Category:Formulas]] | [[Category:Formulas]] |
Revision as of 06:49, 7 September 2010
Laplace Transform Pairs and Properties | |||||
---|---|---|---|---|---|
Definition | |||||
Laplace Transform | $ X(s)=\int_{-\infty}^\infty x(t) e^{-st}dt $ | ||||
Inverse Laplace Transform | |||||
Laplace Transform Pairs | |||||
notes | Signal | Laplace Transform | ROC | ||
unit impulse/Dirac delta | $ \,\!\delta(t) $ | 1 | $ \text{All}\, s \in {\mathbb C} $ | ||
unit step function | $ \,\! u(t) $ | $ \frac{1}{s} $ | $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > 0 $ | ||
$ \,\! -u(-t) $ | $ \frac{1}{s} $ | $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace < 0 $ | |||
$ \frac{t^{n-1}}{(n-1)!}u(t) $ | $ \frac{1}{s^{n}} $ | $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > 0 $ | |||
$ -\frac{t^{n-1}}{(n-1)!}u(-t) $ | $ \frac{1}{s^{n}} $ | $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace < 0 $ | |||
$ \,\!e^{-\alpha t}u(t) $ | $ \frac{1}{s+\alpha} $ | $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > -\alpha $ | |||
$ \,\! -e^{-\alpha t}u(-t) $ | $ \frac{1}{s+\alpha} $ | $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace < -\alpha $ | |||
$ \frac{t^{n-1}}{(n-1)!}e^{-\alpha t}u(t) $ | $ \frac{1}{(s+\alpha )^{n}} $ | $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > -\alpha $ | |||
$ -\frac{t^{n-1}}{(n-1)!}e^{-\alpha t}u(-t) $ | $ \frac{1}{(s+\alpha )^{n}} $ | $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace < -\alpha $ | |||
$ \,\!\delta (t - T) $ | $ \,\! e^{-sT} $ | $ \text{All}\,\, s\in {\mathbb C} $ | |||
$ \,\cos( \omega_0 t)u(t) $ | $ \frac{s}{s^2+\omega_0^{2}} $ | $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > 0 $ | |||
$ \, \sin( \omega_0 t)u(t) $ | $ \frac{\omega_0}{s^2+\omega_0^{2}} $ | $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > 0 $ | |||
$ \,e^{-\alpha t}\cos( \omega_0 t) u(t) $ | $ \frac{s+\alpha}{(s+\alpha)^{2}+\omega_0^{2}} $ | $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > -\alpha $ | |||
$ \, e^{-\alpha t}\sin( \omega_0 t)u(t) $ | $ \frac{\omega_0}{(s+\alpha)^{2}+\omega_0^{2}} $ | $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > -\alpha $ | |||
$ u_n(t) = \frac{d^{n}\delta (t)}{dt^{n}} $ | $ \,\!s^{n} $ | $ All\,\, s $ | |||
$ u_{-n}(t) = \underbrace{u(t) *\dots * u(t)}_{n\,\,times} $ | $ \frac{1}{s^{n}} $ | $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > 0 $ |