(4 intermediate revisions by one other user not shown)
Line 2: Line 2:
  
 
===Fourier Transform:===
 
===Fourier Transform:===
:<math>\ X(f) = \int_{-\infty}^{\infty} x(t)\ e^{- j 2 \pi f t}\,dt </math>
+
:<math>\ F(f) = \int_{-\infty}^{\infty} x(t)\ e^{- j 2 \pi f t}\,dt </math>
  
 
===Inverse Fourier Transform:===
 
===Inverse Fourier Transform:===
:<math>f(x) = \int_{-\infty}^{\infty} X(f)\ e^{j 2 \pi f t}\,df </math>
+
:<math>\ f(t) = \int_{-\infty}^{\infty} F(f)\ e^{j 2 \pi f t}\,df </math>
                                                                                   for every real number ''f & x''.
+
                                                                                   for every real number ''f & t''.
  
 
==Basic Properties of Fourier Transforms:==
 
==Basic Properties of Fourier Transforms:==
Line 13: Line 13:
  
 
Linearity:  
 
Linearity:  
:If <math>\  h(x) = a.f(x) + b.g(x)</math> then <math>\ H(f)= a.F(f)+b.G(f)</math>
+
:If <math>\  h(t) = a.f(t) + b.g(t)</math> then <math>\ H(f)= a.F(f)+b.G(f)</math>
  
 
Time Shifting:  
 
Time Shifting:  
  
:If <math>\ f(x)=g(x-x_0) </math> then <math>\ F(f)=e^{-2\pi i f x_0 }G(f)</math>
+
:If <math>\ f(t)=g(t-t_0) </math> then <math>\ F(f)=e^{-2\pi i f t_0 }G(f)</math>
  
 
Frequency Shifting:
 
Frequency Shifting:
  
:If <math>\ f(x)= e^{2\pi i x f_0}g(x) </math> then <math>\ F(f)=G(f-f_0)</math>
+
:If <math>\ f(t)= e^{2\pi i t f_0}g(t) </math> then <math>\ F(f)=G(f-f_0)</math>
  
 
Time Scaling:
 
Time Scaling:
  
:If <math>\ f(x)=g(ax) </math> then <math>\ F(f)=\frac{1}{|a|} G(\frac{f}{a})</math>
+
:If <math>\ f(t)=g(at) </math> then <math>\ F(f)=\frac{1}{|a|} G(\frac{f}{a})</math>
  
 
Convolution:
 
Convolution:
 +
Convolution in Time domain corresponds to multiplication in Frequency domain.
 +
 +
:If <math>\ h(t)=f(t)*g(t)</math> then <math>\ H(f)=F(f).G(f)</math>
 +
----
 +
[[Hw3ECE438F09boutin|Back to HW3 ECE438 Fall 2009]]
 +
 +
[[ECE438|Back to ECE438]]

Latest revision as of 06:34, 25 August 2010

Fourier Transform and its basic Properties:

Fourier Transform:

$ \ F(f) = \int_{-\infty}^{\infty} x(t)\ e^{- j 2 \pi f t}\,dt $

Inverse Fourier Transform:

$ \ f(t) = \int_{-\infty}^{\infty} F(f)\ e^{j 2 \pi f t}\,df $
                                                                                 for every real number f & t.

Basic Properties of Fourier Transforms:

Suppose a and b are any complexn numbers, if h(x) ƒ(x) and g(x) Fourier Transform to H(f) F(f) and G(f) respectively, then

Linearity:

If $ \ h(t) = a.f(t) + b.g(t) $ then $ \ H(f)= a.F(f)+b.G(f) $

Time Shifting:

If $ \ f(t)=g(t-t_0) $ then $ \ F(f)=e^{-2\pi i f t_0 }G(f) $

Frequency Shifting:

If $ \ f(t)= e^{2\pi i t f_0}g(t) $ then $ \ F(f)=G(f-f_0) $

Time Scaling:

If $ \ f(t)=g(at) $ then $ \ F(f)=\frac{1}{|a|} G(\frac{f}{a}) $

Convolution: Convolution in Time domain corresponds to multiplication in Frequency domain.

If $ \ h(t)=f(t)*g(t) $ then $ \ H(f)=F(f).G(f) $

Back to HW3 ECE438 Fall 2009

Back to ECE438

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett