(12 intermediate revisions by the same user not shown) | |||
Line 7: | Line 7: | ||
<br> | <br> | ||
− | {| width="55%" | + | {| width="55%" cellspacing="1" cellpadding="1" border="1" |
|- | |- | ||
− | ! scope="col" | Lecture | + | ! scope="col" | Lecture |
! scope="col" | Topic | ! scope="col" | Topic | ||
|- | |- | ||
− | | 1 | + | | [[Lecture1ECE662S10|1]] |
| 1. Introduction | | 1. Introduction | ||
|- | |- | ||
− | | 1 | + | | [[Lecture1ECE662S10|1]] |
| 2. What is pattern Recognition | | 2. What is pattern Recognition | ||
|- | |- | ||
− | | 2 | + | | [[Lecture2ECE662S10|2]],[[Lecture3ECE662S10|3]] |
| 3. Finite vs Infinite feature spaces | | 3. Finite vs Infinite feature spaces | ||
|- | |- | ||
− | | 4 | + | | [[Lecture4ECE662S10|4]],[[Lecture5ECE662S10|5]] |
| 4. Bayes Rule | | 4. Bayes Rule | ||
|- | |- | ||
− | | 6-10 | + | | [[Lecture6ECE662S10|6]]-10 |
| | | | ||
− | 5. | + | 5. Discriminant functions |
− | + | *Definition; | |
− | + | *Application to normally distributed features; | |
− | + | *Error analysis. | |
− | + | ||
− | + | ||
|- | |- | ||
− | | 11 | + | | [[Lecture11ECE662S10|11]],12,13 |
| | | | ||
− | 6. Parametric Density Estimation | + | 6. Parametric Density Estimation |
− | + | *Maximum likelihood estimation | |
− | + | *Bayesian parameter estimation | |
− | + | ||
|- | |- | ||
+ | | 13-19 | ||
| | | | ||
− | + | 7. Non-parametric Density Estimation | |
− | 7. Non-parametric Density Estimation | + | |
− | + | *Parzen Windows | |
− | + | *K-nearest neighbors | |
− | + | *The nearest neighbor classification rule. | |
− | + | ||
− | + | ||
|- | |- | ||
− | | | + | | 19,20,[[Lecture21ECE662S10|21]], [[Lecture22ECE662S10|22]] |
| 8. Linear Discriminants | | 8. Linear Discriminants | ||
|- | |- | ||
+ | | [[Lecture22ECE662S10|22]], [[Lecture23ECE662S10|23]] ,[[Lecture24ECE662S10|24]],[[Lecture25ECE662S10|25]],[[Lecture26ECE662S10|26]] | ||
| | | | ||
− | + | 9. Non-Linear Discriminant functions | |
+ | |||
+ | *Support Vector Machines | ||
+ | *Artificial Neural Networks | ||
+ | |||
|- | |- | ||
− | | | + | | 27,28,29,30 |
− | | 10 | + | | 10. Clustering and decision trees |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
|} | |} | ||
Latest revision as of 07:55, 22 April 2010
Course Outline, ECE662 Spring 2010 Prof. Mimi
Note: This is an approximate outline that is subject to change throughout the semester.
Lecture | Topic |
---|---|
1 | 1. Introduction |
1 | 2. What is pattern Recognition |
2,3 | 3. Finite vs Infinite feature spaces |
4,5 | 4. Bayes Rule |
6-10 |
5. Discriminant functions
|
11,12,13 |
6. Parametric Density Estimation
|
13-19 |
7. Non-parametric Density Estimation
|
19,20,21, 22 | 8. Linear Discriminants |
22, 23 ,24,25,26 |
9. Non-Linear Discriminant functions
|
27,28,29,30 | 10. Clustering and decision trees |
Back to 2010 Spring ECE 662 mboutin