(15 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | + | <br> | |
− | = | + | = Course Outline, [[ECE662]] Spring 2010 [[User:Mboutin|Prof. Mimi]] = |
+ | Note: This is an approximate outline that is subject to change throughout the semester. | ||
+ | <br> | ||
− | + | {| width="55%" cellspacing="1" cellpadding="1" border="1" | |
+ | |- | ||
+ | ! scope="col" | Lecture | ||
+ | ! scope="col" | Topic | ||
+ | |- | ||
+ | | [[Lecture1ECE662S10|1]] | ||
+ | | 1. Introduction | ||
+ | |- | ||
+ | | [[Lecture1ECE662S10|1]] | ||
+ | | 2. What is pattern Recognition | ||
+ | |- | ||
+ | | [[Lecture2ECE662S10|2]],[[Lecture3ECE662S10|3]] | ||
+ | | 3. Finite vs Infinite feature spaces | ||
+ | |- | ||
+ | | [[Lecture4ECE662S10|4]],[[Lecture5ECE662S10|5]] | ||
+ | | 4. Bayes Rule | ||
+ | |- | ||
+ | | [[Lecture6ECE662S10|6]]-10 | ||
+ | | | ||
+ | 5. Discriminant functions | ||
+ | *Definition; | ||
+ | *Application to normally distributed features; | ||
+ | *Error analysis. | ||
+ | |- | ||
+ | | [[Lecture11ECE662S10|11]],12,13 | ||
+ | | | ||
+ | 6. Parametric Density Estimation | ||
+ | *Maximum likelihood estimation | ||
+ | *Bayesian parameter estimation | ||
− | [[ 2010 Spring ECE 662 mboutin|Back to 2010 Spring ECE 662 mboutin]] | + | |- |
+ | | 13-19 | ||
+ | | | ||
+ | 7. Non-parametric Density Estimation | ||
+ | |||
+ | *Parzen Windows | ||
+ | *K-nearest neighbors | ||
+ | *The nearest neighbor classification rule. | ||
+ | |||
+ | |- | ||
+ | | 19,20,[[Lecture21ECE662S10|21]], [[Lecture22ECE662S10|22]] | ||
+ | | 8. Linear Discriminants | ||
+ | |- | ||
+ | | [[Lecture22ECE662S10|22]], [[Lecture23ECE662S10|23]] ,[[Lecture24ECE662S10|24]],[[Lecture25ECE662S10|25]],[[Lecture26ECE662S10|26]] | ||
+ | | | ||
+ | 9. Non-Linear Discriminant functions | ||
+ | |||
+ | *Support Vector Machines | ||
+ | *Artificial Neural Networks | ||
+ | |||
+ | |- | ||
+ | | 27,28,29,30 | ||
+ | | 10. Clustering and decision trees | ||
+ | |} | ||
+ | |||
+ | <br> | ||
+ | |||
+ | ---- | ||
+ | |||
+ | [[2010 Spring ECE 662 mboutin|Back to 2010 Spring ECE 662 mboutin]] | ||
+ | |||
+ | [[Category:2010_Spring_ECE_662_mboutin]] |
Latest revision as of 07:55, 22 April 2010
Course Outline, ECE662 Spring 2010 Prof. Mimi
Note: This is an approximate outline that is subject to change throughout the semester.
Lecture | Topic |
---|---|
1 | 1. Introduction |
1 | 2. What is pattern Recognition |
2,3 | 3. Finite vs Infinite feature spaces |
4,5 | 4. Bayes Rule |
6-10 |
5. Discriminant functions
|
11,12,13 |
6. Parametric Density Estimation
|
13-19 |
7. Non-parametric Density Estimation
|
19,20,21, 22 | 8. Linear Discriminants |
22, 23 ,24,25,26 |
9. Non-Linear Discriminant functions
|
27,28,29,30 | 10. Clustering and decision trees |
Back to 2010 Spring ECE 662 mboutin