(New page: == CT Periodic Fx == <math>x(t)=e^j*t</math> == DT Periodic Fx == == CT NON-Periodic Fx == == DT NON-Periodic Fx ==)
 
 
(12 intermediate revisions by one other user not shown)
Line 1: Line 1:
 +
[[Category:ECE301]]
 +
[[Category:periodicity]]
 +
=Periodic versus non-periodic functions ([[Homework_1_ECE301Fall2008mboutin|hw1]], [[ECE301]])=
 +
<span style="color:green"> Read the instructor's comments [[hw1periodicECE301f08profcomments|here]]. </span>
 +
 
== CT Periodic Fx ==
 
== CT Periodic Fx ==
 
<math>x(t)=e^j*t</math>
 
<math>x(t)=e^j*t</math>
 +
 +
<math>e^j*t</math>---> <math>cos(t) + j*sin(t)</math>
 +
 +
the real part is periodic along with the imaginary part
 
== DT Periodic Fx ==
 
== DT Periodic Fx ==
 +
<math>x[n]=e^(j*w*n)</math>
 +
 +
the value will be periodic as long as
 +
 +
<math>w/(2*pi) = K/N </math>
 +
 +
K is any integer
 +
 
== CT NON-Periodic Fx ==
 
== CT NON-Periodic Fx ==
== DT NON-Periodic Fx ==
+
<math>x(t)=x^2</math>
 +
 
 +
does not follow the rules for periodic signals

Latest revision as of 06:25, 14 April 2010

Periodic versus non-periodic functions (hw1, ECE301)

Read the instructor's comments here.

CT Periodic Fx

$ x(t)=e^j*t $

$ e^j*t $---> $ cos(t) + j*sin(t) $

the real part is periodic along with the imaginary part

DT Periodic Fx

$ x[n]=e^(j*w*n) $

the value will be periodic as long as

$ w/(2*pi) = K/N $

K is any integer

CT NON-Periodic Fx

$ x(t)=x^2 $

does not follow the rules for periodic signals

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett