(New page: ==Periodic Signal== Let <math>x[n] = e^{jn}</math> For x[n] to be periodic, the following must hold true: <math>e^{jn} = e^{j(n+N)}</math> ==Non Periodic Signal==)
 
 
(3 intermediate revisions by one other user not shown)
Line 1: Line 1:
 +
=Periodic versus non-periodic functions ([[Homework_1_ECE301Fall2008mboutin|hw1]], [[ECE301]])=
 +
<span style="color:green"> Read the instructor's comments [[hw1periodicECE301f08profcomments|here]]. </span>
 +
 +
A discrete time signal is periodic if there exists T > 0 such that x(t + T) = x(t)
 +
 +
A continuous time signal is periodic if there exists some integer N > 0 such that x[n + N] = x[n]
 +
 
==Periodic Signal==  
 
==Periodic Signal==  
 +
 +
Let <math>x(t) = tan(t)</math>
 +
 +
For x(t) to be periodic, the following must hold true:
 +
 +
tan(t) = tan(t + T) for some value of T > 0
 +
 +
Since we know that tan(t) repeats itself after every period of <math> t = \pi</math> , we know that x(t) is a periodic signal.
 +
 +
[[Image:Tangent_ECE301Fall2008mboutin.gif]]
 +
 +
==Non Periodic Signal==
  
 
Let <math>x[n] = e^{jn}</math>
 
Let <math>x[n] = e^{jn}</math>
Line 5: Line 24:
 
For x[n] to be periodic, the following must hold true:
 
For x[n] to be periodic, the following must hold true:
  
<math>e^{jn} = e^{j(n+N)}</math>
+
<math>e^{jn} = e^{j(n+N)}</math> for some integer N
  
==Non Periodic Signal==
+
<math>e^{jn} = e^{jn}  e^{jN}</math>
 +
 
 +
<math>1 = e^{jN}</math>
 +
 
 +
1 = cos(N) + jsin(N)
 +
 
 +
This equation only holds true if <math>N = 2\pi</math> or some multiple of <math>2\pi</math>
 +
 
 +
Therefore<math>x[n] = e^{jn}</math> is not periodic because <math>2\pi</math> is not an integer.

Latest revision as of 06:20, 14 April 2010

Periodic versus non-periodic functions (hw1, ECE301)

Read the instructor's comments here.

A discrete time signal is periodic if there exists T > 0 such that x(t + T) = x(t)

A continuous time signal is periodic if there exists some integer N > 0 such that x[n + N] = x[n]

Periodic Signal

Let $ x(t) = tan(t) $

For x(t) to be periodic, the following must hold true:

tan(t) = tan(t + T) for some value of T > 0

Since we know that tan(t) repeats itself after every period of $ t = \pi $ , we know that x(t) is a periodic signal.

Tangent ECE301Fall2008mboutin.gif

Non Periodic Signal

Let $ x[n] = e^{jn} $

For x[n] to be periodic, the following must hold true:

$ e^{jn} = e^{j(n+N)} $ for some integer N

$ e^{jn} = e^{jn} e^{jN} $

$ 1 = e^{jN} $

1 = cos(N) + jsin(N)

This equation only holds true if $ N = 2\pi $ or some multiple of $ 2\pi $

Therefore$ x[n] = e^{jn} $ is not periodic because $ 2\pi $ is not an integer.

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett