(Non-Periodic Function)
 
(3 intermediate revisions by one other user not shown)
Line 1: Line 1:
 +
=Periodic versus non-periodic functions ([[Homework_1_ECE301Fall2008mboutin|hw1]], [[ECE301]])=
 +
<span style="color:green"> Read the instructor's comments [[hw1periodicECE301f08profcomments|here]]. </span>
 +
 
==Periodic Function==
 
==Periodic Function==
 +
The definition of a periodic function is as follows:
 +
x[n] is periodic iff there exists an integer N such that x[n+N] = x[n].  The value of N is called the "Period."
 +
 +
An example of a periodic function is <math>f(t) = e^{2\pi j}</math>.
 +
To prove this, we do the following:
 +
 +
<math>x[n+N] = x[n]</math>
 +
 +
 +
<math>e^{2\pi j (n+N)} = e^{2\pi j n}</math>
 +
 +
 +
<math>{e^{2\pi j n} e^{2\pi j N}} = e^{2\pi j n}</math>
 +
 +
 +
<math>e^{2\pi j N} = 1</math>
 +
 +
 +
<math>\cos(2\pi N) + j\sin(2\pi N) = 1</math> 
  
The function shown is <math>f(t) = \sin(t)</math>.
+
Which is true if
  
Note the repetition of the function every 2\pi along the x-axis.
+
<math>2\pi N = 2\pi </math>
  
[[Image:periodic_function_ECE301Fall2008mboutin.jpg|frame|center|The function <math>f(t) = \sin(t)</math> from 0 to 15.]]
+
at some point.
  
 +
Since N = 1 yields <math> 2\pi = 2\pi </math>, we can conclude that in fact, <math>f(t) = e^{2\pi j}</math> is periodic.
  
 
==Non-Periodic Function==
 
==Non-Periodic Function==
Line 14: Line 37:
 
Note that the function never repeats itself.  It changes constantly over its entire expanse.
 
Note that the function never repeats itself.  It changes constantly over its entire expanse.
  
[[Image:non_periodic_function_ECE301Fall2008mboutin.jpg|frame|center|The function <math>f(t) = {\sin(t)\overt}</math> from 0 to 15.]]
+
[[Image:non_periodic_function_ECE301Fall2008mboutin.jpg|frame|center|The function <math>f(t) = {\sin(t)\over t}</math> from 0 to 15.]]

Latest revision as of 06:15, 14 April 2010

Periodic versus non-periodic functions (hw1, ECE301)

Read the instructor's comments here.

Periodic Function

The definition of a periodic function is as follows: x[n] is periodic iff there exists an integer N such that x[n+N] = x[n]. The value of N is called the "Period."

An example of a periodic function is $ f(t) = e^{2\pi j} $. To prove this, we do the following:

$ x[n+N] = x[n] $


$ e^{2\pi j (n+N)} = e^{2\pi j n} $


$ {e^{2\pi j n} e^{2\pi j N}} = e^{2\pi j n} $


$ e^{2\pi j N} = 1 $


$ \cos(2\pi N) + j\sin(2\pi N) = 1 $

Which is true if

$ 2\pi N = 2\pi $

at some point.

Since N = 1 yields $ 2\pi = 2\pi $, we can conclude that in fact, $ f(t) = e^{2\pi j} $ is periodic.

Non-Periodic Function

The function shown is $ f(t) = {\sin(t)\over t} $.

Note that the function never repeats itself. It changes constantly over its entire expanse.

The function $ f(t) = {\sin(t)\over t} $ from 0 to 15.

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett