Line 50: Line 50:
  
 
|-
 
|-
| 19,20,[[Lecture21ECE662S10|21]],22  
+
| 19,20,[[Lecture21ECE662S10|21]], [[Lecture22ECE662S10|22]]
 
| 8. Linear Discriminants
 
| 8. Linear Discriminants
 
|-
 
|-

Revision as of 09:13, 13 April 2010


Course Outline, ECE662 Spring 2010 Prof. Mimi

Note: This is an approximate outline that is subject to change throughout the semester.


Lecture Topic
1 1. Introduction
1 2. What is pattern Recognition
2,3 3. Finite vs Infinite feature spaces
4,5 4. Bayes Rule
6-10

5. Discriminant functions

  • Definition;
  • Application to normally distributed features;
  • Error analysis.
11-13

6. Parametric Density Estimation

  • Maximum likelihood estimation
  • Bayesian parameter estimation
13-19

7. Non-parametric Density Estimation

  • Parzen Windows
  • K-nearest neighbors
  • The nearest neighbor classification rule.
19,20,21, 22 8. Linear Discriminants

9. Non-Linear Discriminant functions

  • Support Vector Machines 
  • Artificial Neural Networks
  • Decision Trees
10. Clustering



Back to 2010 Spring ECE 662 mboutin

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn