Line 18: Line 18:
 
| 2. What is pattern Recognition
 
| 2. What is pattern Recognition
 
|-
 
|-
| [[Lecture2ECE662S10|2]]-3  
+
| [[Lecture2ECE662S10|2]],[[Lecture3ECE662S10|3]]
 
| 3. Finite vs Infinite feature spaces
 
| 3. Finite vs Infinite feature spaces
 
|-
 
|-
| 4-5  
+
| [[Lecture4ECE662S10|4]],[[Lecture5ECE662S10|5]]
 
| 4. Bayes Rule
 
| 4. Bayes Rule
 
|-
 
|-
| 6-10  
+
| [[Lecture6ECE662S10|6]]-10  
 
|  
 
|  
 
5. Discriminant functions  
 
5. Discriminant functions  

Revision as of 07:19, 12 April 2010


Course Outline, ECE662 Spring 2010 Prof. Mimi

Note: This is an approximate outline that is subject to change throughout the semester.


Lecture Topic
1 1. Introduction
1 2. What is pattern Recognition
2,3 3. Finite vs Infinite feature spaces
4,5 4. Bayes Rule
6-10

5. Discriminant functions

  • Definition;
  • Application to normally distributed features;
  • Error analysis.
11-13

6. Parametric Density Estimation

  • Maximum likelihood estimation
  • Bayesian parameter estimation
13-19

7. Non-parametric Density Estimation

  • Parzen Windows
  • K-nearest neighbors
  • The nearest neighbor classification rule.
19,20,21,22 8. Linear Discriminants

9. Non-Linear Discriminant functions

  • Support Vector Machines 
  • Artificial Neural Networks
  • Decision Trees
10. Clustering



Back to 2010 Spring ECE 662 mboutin

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett