(One intermediate revision by the same user not shown)
Line 26: Line 26:
 
and that this limit is <math> L \, </math>.  
 
and that this limit is <math> L \, </math>.  
  
Indeed, let us select <math> \varepsilon >0 </math>. Since (*) is true, then   
+
Indeed, let us select <math> \varepsilon >0 \ </math>. Since (*) is true, then   
<math>\exists \delta(\varepsilon)>0 </math> such that  
+
<math>\exists \delta(\varepsilon)>0 \,</math> such that  
 
<math> 0 < |z-c| < \delta \, </math> implies <math> |f(z)-L|< \varepsilon  </math>.  
 
<math> 0 < |z-c| < \delta \, </math> implies <math> |f(z)-L|< \varepsilon  </math>.  
  
Consider <math> |h(x)-L| \, </math> when <math>x\to 0 </math>.
+
Consider <math> |h(x)-L| \, </math> when <math>x\to 0 \, </math>.
Notice that if <math> |x-0|<\delta </math>. If <math> z=x+c </math> then  
+
Notice that if <math> |x-0|<\delta \, </math>. If <math> z=x+c \, </math> then  
  
 
<math>  
 
<math>  
|x-0|=|(x+c) - c|= |z-c|<\delta  
+
|x-0|=|(x+c) - c|= |z-c|<\delta \,
 
</math>
 
</math>
  
Line 46: Line 46:
  
 
<math>  
 
<math>  
|f(x+c)-L|=|h(x)-L|<\varepsilon  
+
|f(z)-L|=|f(x+c)-L|=|h(x)-L|<\varepsilon  
 
</math>
 
</math>
  
 
In other words, <math> |h(x)-L|<\varepsilon </math>
 
In other words, <math> |h(x)-L|<\varepsilon </math>
as long as <math> |x-0|<\delta </math>. Because <math> \varepsilon>0 </math> was  
+
as long as <math> |x-0|<\delta\, </math>. Because <math> \varepsilon>0 </math> was  
 
arbitrary, we conclude that  
 
arbitrary, we conclude that  
  

Latest revision as of 09:27, 7 April 2010

To ask a new question, add a line and type in your question. You can use LaTeX to type math. Here is a link to a short LaTeX tutorial.

To answer a question, open the page for editing and start typing below the question...

go back to the Discussion Page


Could someone formulate 4.1.4? It's easy but I'm not sure my answer is correct. Thanks


prof. Alekseenko: In problem 4 we need to prove the "if and only if" statement. It has to parts. The first part is that

if $ \lim_{x\to c} f(x) = L $ then $ \lim_{x\to 0} f(x+c) = L $.

The second part goes in the opposite direction. Namely, we need to prove that

if $ \lim_{x\to 0} f(x+c) = L $ then $ \lim_{x\to c} f(x) = L $.

Let me work out the first part and may be somebody can do the second. We assume that

(*) $ \lim_{z\to c} f(z) = L $

Notice that we used letter $ z\, $ instead of the variable $ x\, $. The reason for this will be clear soon. However, using a different letter to denote the variable is not a problem.

Let us show that $ h(x):=f(x+c)\, $ also has limit at $ x=0\, $ and that this limit is $ L \, $.

Indeed, let us select $ \varepsilon >0 \ $. Since (*) is true, then $ \exists \delta(\varepsilon)>0 \, $ such that $ 0 < |z-c| < \delta \, $ implies $ |f(z)-L|< \varepsilon $.

Consider $ |h(x)-L| \, $ when $ x\to 0 \, $. Notice that if $ |x-0|<\delta \, $. If $ z=x+c \, $ then

$ |x-0|=|(x+c) - c|= |z-c|<\delta \, $

Then, of course,

$ |f(z)-L|<\varepsilon $

However, $ z=x+c \, $, therefore,

$ |f(z)-L|=|f(x+c)-L|=|h(x)-L|<\varepsilon $

In other words, $ |h(x)-L|<\varepsilon $ as long as $ |x-0|<\delta\, $. Because $ \varepsilon>0 $ was arbitrary, we conclude that

(**) $ \lim_{x\to 0} h(x) = \lim_{x\to 0} f(x+c) = L $


Alumni Liaison

BSEE 2004, current Ph.D. student researching signal and image processing.

Landis Huffman