Line 1: | Line 1: | ||
{| | {| | ||
− | |||
− | |||
|- | |- | ||
− | ! colspan="4" style="background: # | + | ! colspan="4" style="background: #e4bc7e; font-size: 110%;" | Laplace Transform Pairs and Properties |
|- | |- | ||
− | + | ! colspan="4" style="background: #eee;" | Laplace Transform Pairs | |
+ | ! | ||
+ | ! | ||
|- | |- | ||
− | | | + | | style="padding-right: 1em;" | notes |
+ | | Signal | ||
+ | | Laplace Transform | ||
+ | | ROC | ||
|- | |- | ||
− | | align=" | + | | align="left" style="padding-right: 1em;" | unit impulse/Dirac delta |
− | + | | <math>\,\!\delta(t)</math> | |
− | + | | <span class="texhtml">1</span> | |
− | + | | <math>\text{All}\, s \in {\mathbb C}</math> | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
|- | |- | ||
+ | | align="right" style="padding-right: 1em;" | unit step function | ||
+ | | <math>\,\! u(t)</math> | ||
+ | | <math>\frac{1}{s}</math> | ||
+ | | <math>\mathcal{R} \mathfrak{e} \lbrace s \rbrace > 0 </math> | ||
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" | | ||
+ | | <math>\,\! -u(-t)</math> | ||
+ | | <math>\frac{1}{s}</math> | ||
+ | | <math>\mathcal{R} \mathfrak{e} \lbrace s \rbrace < 0 </math> | ||
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" | | ||
+ | | <math>\frac{t^{n-1}}{(n-1)!}u(t)</math> | ||
+ | | <math>\frac{1}{s^{n}}</math> | ||
+ | | <math>\mathcal{R} \mathfrak{e} \lbrace s \rbrace > 0 </math> | ||
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" | | ||
+ | | <math>-\frac{t^{n-1}}{(n-1)!}u(-t)</math> | ||
+ | | <math>\frac{1}{s^{n}}</math> | ||
+ | | <math>\mathcal{R} \mathfrak{e} \lbrace s \rbrace < 0 </math> | ||
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" | | ||
+ | | <math>\,\!e^{-\alpha t}u(t)</math> | ||
+ | | <math>\frac{1}{s+\alpha}</math> | ||
+ | | <math>\mathcal{R} \mathfrak{e} \lbrace s \rbrace > -\alpha </math> | ||
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" | | ||
+ | | <math>\,\! -e^{-\alpha t}u(-t)</math> | ||
+ | | <math>\frac{1}{s+\alpha}</math> | ||
+ | | <math>\mathcal{R} \mathfrak{e} \lbrace s \rbrace < -\alpha </math> | ||
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" | | ||
+ | | <math>\frac{t^{n-1}}{(n-1)!}e^{-\alpha t}u(t)</math> | ||
+ | | <math>\frac{1}{(s+\alpha )^{n}}</math> | ||
+ | | <math>\mathcal{R} \mathfrak{e} \lbrace s \rbrace > -\alpha </math> | ||
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" | | ||
+ | | <math>-\frac{t^{n-1}}{(n-1)!}e^{-\alpha t}u(-t)</math> | ||
+ | | <math>\frac{1}{(s+\alpha )^{n}}</math> | ||
+ | | <math>\mathcal{R} \mathfrak{e} \lbrace s \rbrace < -\alpha </math> | ||
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" | | ||
+ | | <math>\,\!\delta (t - T)</math> | ||
+ | | <math>\,\! e^{-sT}</math> | ||
+ | | <math>\text{All}\,\, s\in {\mathbb C}</math> | ||
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" | | ||
+ | | <math>\,\cos( \omega_0 t)u(t)</math> | ||
+ | | <math>\frac{s}{s^2+\omega_0^{2}}</math> | ||
+ | | <math>\mathcal{R} \mathfrak{e} \lbrace s \rbrace > 0 </math> | ||
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" | | ||
+ | | <math>\, \sin( \omega_0 t)u(t)</math> | ||
+ | | <math>\frac{\omega_0}{s^2+\omega_0^{2}}</math> | ||
+ | | <math>\mathcal{R} \mathfrak{e} \lbrace s \rbrace > 0 </math> | ||
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" | | ||
+ | | <math>\,e^{-\alpha t}\cos( \omega_0 t) u(t)</math> | ||
+ | | <math>\frac{s+\alpha}{(s+\alpha)^{2}+\omega_0^{2}}</math> | ||
+ | | <math>\mathcal{R} \mathfrak{e} \lbrace s \rbrace > -\alpha </math> | ||
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" | | ||
+ | | <math>\, e^{-\alpha t}\sin( \omega_0 t)u(t)</math> | ||
+ | | <math>\frac{\omega_0}{(s+\alpha)^{2}+\omega_0^{2}}</math> | ||
+ | | <math>\mathcal{R} \mathfrak{e} \lbrace s \rbrace > -\alpha </math> | ||
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" | | ||
+ | | <math>u_n(t) = \frac{d^{n}\delta (t)}{dt^{n}}</math> | ||
+ | | <math>\,\!s^{n}</math> | ||
+ | | <math>All\,\, s</math> | ||
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" | | ||
+ | | <math>u_{-n}(t) = \underbrace{u(t) *\dots * u(t)}_{n\,\,times}</math> | ||
+ | | <math>\frac{1}{s^{n}}</math> | ||
+ | | <math>\mathcal{R} \mathfrak{e} \lbrace s \rbrace > 0 </math> | ||
|} | |} | ||
---- | ---- | ||
− | [[ MegaCollectiveTableTrial1|Back to Collective Table]] | + | [[ECE301|Go to the ECE 301 homepage]] |
+ | |||
+ | [[MegaCollectiveTableTrial1|Back to Collective Table]] | ||
+ | |||
[[Category:Formulas]] | [[Category:Formulas]] |
Revision as of 15:51, 5 April 2010
Laplace Transform Pairs and Properties | |||||
---|---|---|---|---|---|
Laplace Transform Pairs | |||||
notes | Signal | Laplace Transform | ROC | ||
unit impulse/Dirac delta | $ \,\!\delta(t) $ | 1 | $ \text{All}\, s \in {\mathbb C} $ | ||
unit step function | $ \,\! u(t) $ | $ \frac{1}{s} $ | $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > 0 $ | ||
$ \,\! -u(-t) $ | $ \frac{1}{s} $ | $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace < 0 $ | |||
$ \frac{t^{n-1}}{(n-1)!}u(t) $ | $ \frac{1}{s^{n}} $ | $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > 0 $ | |||
$ -\frac{t^{n-1}}{(n-1)!}u(-t) $ | $ \frac{1}{s^{n}} $ | $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace < 0 $ | |||
$ \,\!e^{-\alpha t}u(t) $ | $ \frac{1}{s+\alpha} $ | $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > -\alpha $ | |||
$ \,\! -e^{-\alpha t}u(-t) $ | $ \frac{1}{s+\alpha} $ | $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace < -\alpha $ | |||
$ \frac{t^{n-1}}{(n-1)!}e^{-\alpha t}u(t) $ | $ \frac{1}{(s+\alpha )^{n}} $ | $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > -\alpha $ | |||
$ -\frac{t^{n-1}}{(n-1)!}e^{-\alpha t}u(-t) $ | $ \frac{1}{(s+\alpha )^{n}} $ | $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace < -\alpha $ | |||
$ \,\!\delta (t - T) $ | $ \,\! e^{-sT} $ | $ \text{All}\,\, s\in {\mathbb C} $ | |||
$ \,\cos( \omega_0 t)u(t) $ | $ \frac{s}{s^2+\omega_0^{2}} $ | $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > 0 $ | |||
$ \, \sin( \omega_0 t)u(t) $ | $ \frac{\omega_0}{s^2+\omega_0^{2}} $ | $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > 0 $ | |||
$ \,e^{-\alpha t}\cos( \omega_0 t) u(t) $ | $ \frac{s+\alpha}{(s+\alpha)^{2}+\omega_0^{2}} $ | $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > -\alpha $ | |||
$ \, e^{-\alpha t}\sin( \omega_0 t)u(t) $ | $ \frac{\omega_0}{(s+\alpha)^{2}+\omega_0^{2}} $ | $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > -\alpha $ | |||
$ u_n(t) = \frac{d^{n}\delta (t)}{dt^{n}} $ | $ \,\!s^{n} $ | $ All\,\, s $ | |||
$ u_{-n}(t) = \underbrace{u(t) *\dots * u(t)}_{n\,\,times} $ | $ \frac{1}{s^{n}} $ | $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > 0 $ |