Line 1: | Line 1: | ||
− | + | <br> | |
− | = Course Outline, [[ECE662]] Spring 2010 [[User: | + | = Course Outline, [[ECE662]] Spring 2010 [[User:Mboutin|Prof. Mimi]] = |
− | + | ||
+ | Note: This is an approximate outline that is subject to change throughout the semester. | ||
+ | <br> | ||
+ | {| width="55%" border="1" cellpadding="1" cellspacing="1" | ||
+ | |- | ||
+ | ! scope="col" | Lecture | ||
+ | ! scope="col" | Topic | ||
+ | |- | ||
+ | | 1 | ||
+ | | 1. Introduction | ||
+ | |- | ||
+ | | 1 | ||
+ | | 2. What is pattern Recognition | ||
+ | |- | ||
+ | | 2-3 | ||
+ | | 3. Finite vs Infinite feature spaces | ||
+ | |- | ||
+ | | 4-5 | ||
+ | | 4. Bayes Rule | ||
+ | |- | ||
+ | | 6-10 | ||
+ | | | ||
+ | 5. Discriminate functions | ||
+ | |||
+ | - Definition; | ||
+ | |||
+ | - Application to normally distributed features; | ||
+ | |||
+ | - Error analysis. | ||
+ | |||
+ | |- | ||
+ | | 11-12 | ||
+ | | | ||
+ | 6. Parametric Density Estimation | ||
+ | |||
+ | -Maximum likelihood estimation | ||
+ | |||
+ | -Bayesian parameter estimation | ||
+ | |||
+ | |- | ||
+ | | | ||
+ | | | ||
+ | 7. Non-parametric Density Estimation | ||
+ | |||
+ | -Parzen Windows | ||
+ | |||
+ | -K-nearest neighbors | ||
+ | |||
+ | -The nearest neighbor classification rule. | ||
+ | |||
+ | |- | ||
+ | | | ||
+ | | 8. Linear Discriminants | ||
+ | |- | ||
+ | | | ||
+ | | 9. SVM | ||
+ | |- | ||
+ | | | ||
+ | | 10. ANN | ||
+ | |- | ||
+ | | | ||
+ | | 11. Decision Trees | ||
+ | |- | ||
+ | | | ||
+ | | 12. Clustering | ||
+ | |} | ||
+ | |||
+ | <br> | ||
---- | ---- | ||
+ | |||
[[2010 Spring ECE 662 mboutin|Back to 2010 Spring ECE 662 mboutin]] | [[2010 Spring ECE 662 mboutin|Back to 2010 Spring ECE 662 mboutin]] | ||
+ | |||
+ | [[Category:2010_Spring_ECE_662_mboutin]] |
Revision as of 06:54, 9 March 2010
Course Outline, ECE662 Spring 2010 Prof. Mimi
Note: This is an approximate outline that is subject to change throughout the semester.
Lecture | Topic |
---|---|
1 | 1. Introduction |
1 | 2. What is pattern Recognition |
2-3 | 3. Finite vs Infinite feature spaces |
4-5 | 4. Bayes Rule |
6-10 |
5. Discriminate functions - Definition; - Application to normally distributed features; - Error analysis. |
11-12 |
6. Parametric Density Estimation -Maximum likelihood estimation -Bayesian parameter estimation |
7. Non-parametric Density Estimation -Parzen Windows -K-nearest neighbors -The nearest neighbor classification rule. | |
8. Linear Discriminants | |
9. SVM | |
10. ANN | |
11. Decision Trees | |
12. Clustering |
Back to 2010 Spring ECE 662 mboutin