Line 1: Line 1:
Example: Let <math>\mathbb{X}</math> and <math>\mathbb{Y}</math> be jointly distributed discrete random variables with ranges <math>X = \{0, 1, 2, 3, 4\}</math> and <math>Y = \{0, 1, 2\}</math> respectively.   
+
== Example of Turning Conditional Distributions Around ==
 +
 
 +
Let <math>\mathbb{X}</math> and <math>\mathbb{Y}</math> be jointly distributed discrete random variables with ranges <math>X = \{0, 1, 2, 3, 4\}</math> and <math>Y = \{0, 1, 2\}</math> respectively.   
  
 
Suppose that the conditional distributions <math>P_{\mathbb{X}|\mathbb{Y}}</math> are empirically estimated as follows:
 
Suppose that the conditional distributions <math>P_{\mathbb{X}|\mathbb{Y}}</math> are empirically estimated as follows:
Line 38: Line 40:
  
 
----
 
----
 +
 +
=== Solution 1 ===
  
 
By definition <math>P_{\mathbb{X}|\mathbb{Y}}(x|y) = \frac{P_{\mathbb{X},\mathbb{Y}}(x,y)}{P_{\mathbb{Y}}(y)}</math>, so the joint distribution <math>P_{\mathbb{X},\mathbb{Y}}(x,y)</math> can be computed.
 
By definition <math>P_{\mathbb{X}|\mathbb{Y}}(x|y) = \frac{P_{\mathbb{X},\mathbb{Y}}(x,y)}{P_{\mathbb{Y}}(y)}</math>, so the joint distribution <math>P_{\mathbb{X},\mathbb{Y}}(x,y)</math> can be computed.
Line 117: Line 121:
  
 
--[[User:Jvaught|Jvaught]] 22:34, 29 January 2010 (UTC)
 
--[[User:Jvaught|Jvaught]] 22:34, 29 January 2010 (UTC)
 +
 +
----
 +
 +
=== Solution 2 ===
 +
 +
Or, equivalently, we can use Bayes' Rule explicity. 
 +
 +
Bayes' Rule is:
 +
 +
<math>P_{\mathbb{Y}|\mathbb{X}}(y|x) = \frac{P_{\mathbb{X}|\mathbb{Y}}(x|y)P_{\mathbb{Y}}(y)}{P_{\mathbb{X}}(x)}</math>
 +
 +
<math>P_{\mathbb{X}}(x)</math> can be computed using:
 +
 +
<math>P_\mathbb{X}(x) = \sum_{y\in Y} P_{\mathbb{X}|\mathbb{Y}}(x|y)P_{\mathbb{Y}}(y)</math>
 +
 +
Thus, calculation of <math>P_{\mathbb{Y}|\mathbb{X}}(Y=0|X=0)</math> would proceed as follows:
 +
 +
<math>P_{\mathbb{Y}|\mathbb{X}}(Y=0|X=0) = \frac{P_{\mathbb{X}|\mathbb{Y}}(X=0|Y=0)P_{\mathbb{Y}}(Y=0)}{P_{\mathbb{X}}(X=0)} = \frac{P_{\mathbb{X}|\mathbb{Y}}(X=0|Y=0)P_{\mathbb{Y}}(Y=0)}{\sum_{y\in Y} P_{\mathbb{X}|\mathbb{Y}}(X=0|Y=y)P_{\mathbb{Y}}(Y=y)}</math>
 +
 +
<math> = \frac{0.175 \cdot 0.63}{0.175 \cdot 0.63 + 0.048 \cdot 0.21 + 0.188 \cdot 0.16} = \frac{.11025}{.15041} = 0.732996476 \approx 0.733</math>
 +
 +
The rest of the conditional distribution can be computed similarly using Bayes' Rule and will result in the same answer as in Solution 1.
 +
* This solution is nearly identical to Solution 1, differing only in that this solution does not contruct the joint probability mass function.
 +
 +
 +
--[[User:Pritchey|Pritchey]] 14:38, 1 February 2010 (UTC)
  
 
----
 
----
 
[[ 2010 Spring ECE 662 mboutin|Back to 2010 Spring ECE 662 mboutin]]
 
[[ 2010 Spring ECE 662 mboutin|Back to 2010 Spring ECE 662 mboutin]]
 +
'''Bold text'''

Revision as of 09:38, 1 February 2010

Example of Turning Conditional Distributions Around

Let $ \mathbb{X} $ and $ \mathbb{Y} $ be jointly distributed discrete random variables with ranges $ X = \{0, 1, 2, 3, 4\} $ and $ Y = \{0, 1, 2\} $ respectively.

Suppose that the conditional distributions $ P_{\mathbb{X}|\mathbb{Y}} $ are empirically estimated as follows:


$ x $ 0 1 2 3 4
$ P_{\mathbb{X}|\mathbb{Y}}(x|y=0) $ .175 .635 .159 .000 .031


$ x $ 0 1 2 3 4
$ P_{\mathbb{X}|\mathbb{Y}}(x|y=1) $ .048 .000 .143 .238 .571


$ x $ 0 1 2 3 4
$ P_{\mathbb{X}|\mathbb{Y}}(x|y=2) $ .188 .562 .250 .000 .000


and the marginal $ P_{\mathbb{Y}} $ is empirically estimated as:


$ y $ 0 1 2
$ P_{\mathbb{Y}}(y) $ .63 .21 .16

Estimate the conditional distributions $ P_{\mathbb{Y}|\mathbb{X}} $



Solution 1

By definition $ P_{\mathbb{X}|\mathbb{Y}}(x|y) = \frac{P_{\mathbb{X},\mathbb{Y}}(x,y)}{P_{\mathbb{Y}}(y)} $, so the joint distribution $ P_{\mathbb{X},\mathbb{Y}}(x,y) $ can be computed.

$ P_{\mathbb{X},\mathbb{Y}}(0,0) = P_{\mathbb{X}|\mathbb{Y}}(0|0)P_{\mathbb{Y}}(0) = .175 \cdot .63 = .11 $

Computing the rest of the distribution similarly:

$ P_{\mathbb{X},\mathbb{Y}}(x,y) $
0 1 2 3 4
0 .11 .40 .10 .00 .02
1 .01 .00 .03 .05 .12
2 .03 .09 .04 .00 .00

The marginal distribution $ P_\mathbb{X} $ can be extracted from the joint distribution as:

$ P_\mathbb{X}(x) = \sum_{y\in Y} P_{\mathbb{X},\mathbb{Y}}(x,y) $

$ P_\mathbb{X}(0) = .11 + .01 + .03 = .15 $

Computing the rest of the distribution similarly:


$ x $ 0 1 2 3 4
$ P_{\mathbb{X}}(x) $ .15 .49 .17 .05 .14


Finally $ P_{\mathbb{Y}|\mathbb{X}} $ can be computed by definition.

$ P_{\mathbb{Y}|\mathbb{X}}(0|0) = \frac{P_{\mathbb{X},\mathbb{Y}}(0,0)}{P_{\mathbb{X}}(0)} = \frac{.11}{.15} = .733 $

Computing the rest similarly:


$ y $ 0 1 2
$ P_{\mathbb{Y}|\mathbb{X}}(y|x=0) $ .733 .067 .200


$ y $ 0 1 2
$ P_{\mathbb{Y}|\mathbb{X}}(y|x=1) $ .816 .000 .184


$ y $ 0 1 2
$ P_{\mathbb{Y}|\mathbb{X}}(y|x=2) $ .588 .176 .236


$ y $ 0 1 2
$ P_{\mathbb{Y}|\mathbb{X}}(y|x=3) $ .000 1.00 .000


$ y $ 0 1 2
$ P_{\mathbb{Y}|\mathbb{X}}(y|x=4) $ .143 .857 .000


Note from these $ P_{\mathbb{Y}|\mathbb{X}} $ distributions that for large $ x $ it is highly probable that $ y=1 $ and for small $ x $ it is highly probable that $ y=0 $.

--Jvaught 22:34, 29 January 2010 (UTC)


Solution 2

Or, equivalently, we can use Bayes' Rule explicity.

Bayes' Rule is:

$ P_{\mathbb{Y}|\mathbb{X}}(y|x) = \frac{P_{\mathbb{X}|\mathbb{Y}}(x|y)P_{\mathbb{Y}}(y)}{P_{\mathbb{X}}(x)} $

$ P_{\mathbb{X}}(x) $ can be computed using:

$ P_\mathbb{X}(x) = \sum_{y\in Y} P_{\mathbb{X}|\mathbb{Y}}(x|y)P_{\mathbb{Y}}(y) $

Thus, calculation of $ P_{\mathbb{Y}|\mathbb{X}}(Y=0|X=0) $ would proceed as follows:

$ P_{\mathbb{Y}|\mathbb{X}}(Y=0|X=0) = \frac{P_{\mathbb{X}|\mathbb{Y}}(X=0|Y=0)P_{\mathbb{Y}}(Y=0)}{P_{\mathbb{X}}(X=0)} = \frac{P_{\mathbb{X}|\mathbb{Y}}(X=0|Y=0)P_{\mathbb{Y}}(Y=0)}{\sum_{y\in Y} P_{\mathbb{X}|\mathbb{Y}}(X=0|Y=y)P_{\mathbb{Y}}(Y=y)} $

$ = \frac{0.175 \cdot 0.63}{0.175 \cdot 0.63 + 0.048 \cdot 0.21 + 0.188 \cdot 0.16} = \frac{.11025}{.15041} = 0.732996476 \approx 0.733 $

The rest of the conditional distribution can be computed similarly using Bayes' Rule and will result in the same answer as in Solution 1.

  • This solution is nearly identical to Solution 1, differing only in that this solution does not contruct the joint probability mass function.


--Pritchey 14:38, 1 February 2010 (UTC)


Back to 2010 Spring ECE 662 mboutin Bold text

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett