Line 6: Line 6:
  
 
'''NEWS FLASH:'''  The due date for HWK 8 has been extended to Monday, Nov. 9
 
'''NEWS FLASH:'''  The due date for HWK 8 has been extended to Monday, Nov. 9
 +
 +
'Hint for V.16.1:'  We know that
 +
 +
<math>f(z)=\sum_{n=0}^\infty z^n=\frac{1}{1-z}</math>
 +
 +
if <math>|z|<1</math>.  Notice that
 +
 +
<math>f'(z)=\sum_{n=1}^\infty nz^{n-1}</math>,
 +
 +
and
 +
 +
<math>f''(z)=\sum_{n=2}^\infty n(n-1)z^{n-2}</math>.
 +
 +
What are the power series for <math>zf'(z)</math> and <math>z^f''(z)</math>?  How can you combine these to get the series in the question? --[[User:Bell|Steve Bell]]

Revision as of 10:39, 6 November 2009


Homework 8

HWK 8 problems

NEWS FLASH: The due date for HWK 8 has been extended to Monday, Nov. 9

'Hint for V.16.1:' We know that

$ f(z)=\sum_{n=0}^\infty z^n=\frac{1}{1-z} $

if $ |z|<1 $. Notice that

$ f'(z)=\sum_{n=1}^\infty nz^{n-1} $,

and

$ f''(z)=\sum_{n=2}^\infty n(n-1)z^{n-2} $.

What are the power series for $ zf'(z) $ and $ z^f''(z) $? How can you combine these to get the series in the question? --Steve Bell

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva