Line 9: Line 9:
 
! colspan="2" style="background: #eee;" | Geometric Series
 
! colspan="2" style="background: #eee;" | Geometric Series
 
|-
 
|-
| align="right" style="padding-right: 1em;" | Finite Geometric Series Formula || <math>\sum_{k=0}^n x^k = \left\{ \begin{array}{ll} \frac{1-x^{n+1}}{1-x}&, \text{ if } x\neq 1\\ n+1 &,  \text{ else}\end{array}\right. </math>
+
| align="right" style="padding-right: 1em;" | [[more_on_geometric_series|(info)]] Finite Geometric Series Formula || <math>\sum_{k=0}^n x^k = \left\{ \begin{array}{ll} \frac{1-x^{n+1}}{1-x}&, \text{ if } x\neq 1\\ n+1 &,  \text{ else}\end{array}\right. </math>
 
|-
 
|-
| align="right" style="padding-right: 1em;" | Infinite Geometric Series Formula || <math>\sum_{k=0}^n x^k = \left\{ \begin{array}{ll} \frac{1}{1-x}&, \text{ if } |x|\leq 1\\ \text{diverges} &, \text{ else }\end{array}\right. </math>
+
| align="right" style="padding-right: 1em;" | [[more_on_geometric_series|(info)]] Infinite Geometric Series Formula || <math>\sum_{k=0}^n x^k = \left\{ \begin{array}{ll} \frac{1}{1-x}&, \text{ if } |x|\leq 1\\ \text{diverges} &, \text{ else }\end{array}\right. </math>
 
|-
 
|-
 
! colspan="2" style="background: #eee;" | Other Series
 
! colspan="2" style="background: #eee;" | Other Series

Revision as of 08:43, 2 November 2009

Power Series Formulas
Taylor Series
exponential $ e^x = \sum_{n=0}^\infty \frac{x^n}{n!}, $ for all $ x\in {\mathbb C}\ $
Geometric Series
(info) Finite Geometric Series Formula $ \sum_{k=0}^n x^k = \left\{ \begin{array}{ll} \frac{1-x^{n+1}}{1-x}&, \text{ if } x\neq 1\\ n+1 &, \text{ else}\end{array}\right. $
(info) Infinite Geometric Series Formula $ \sum_{k=0}^n x^k = \left\{ \begin{array}{ll} \frac{1}{1-x}&, \text{ if } |x|\leq 1\\ \text{diverges} &, \text{ else }\end{array}\right. $
Other Series
notes/name equation

Back to Collective Table

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood