Line 1: Line 1:
 
{|
 
{|
 
|-  
 
|-  
! colspan="2" style="background: #bbb; font-size: 110%;" | Power Series Formulas
+
! colspan="2" style="background: #e4bc7e; font-size: 110%;" | Power Series Formulas
 
|-
 
|-
 
! colspan="2" style="background: #eee;" | Geometric Series
 
! colspan="2" style="background: #eee;" | Geometric Series

Revision as of 07:08, 30 October 2009

Power Series Formulas
Geometric Series
Finite Geometric Series Formula $ \sum_{k=0}^n x^k = \left\{ \begin{array}{ll} \frac{1-x^{n+1}}{1-x}&, \text{ if } x\neq 1\\ n+1 &, \text{ else}\end{array}\right. $
Infinite Geometric Series Formula $ \sum_{k=0}^n x^k = \left\{ \begin{array}{ll} \frac{1}{1-x}&, \text{ if } |x|\leq 1\\ \text{diverges} &, \text{ else }\end{array}\right. $
Other Series
notes/name equation

Back to Collective Table

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva