Line 1: Line 1:
= Table of Laplace Transform Pairs =
 
 
{|style="width:75%; background: none; text-align: center; border:1px solid gray;" align="center"
 
{|style="width:75%; background: none; text-align: center; border:1px solid gray;" align="center"
 +
! colspan="4" style="background: #bbb; font-size: 110%;" | Laplace Transform Pairs and Properties
 +
|-
 
|-  
 
|-  
 
! colspan="4" align="left" style="background: #b79256; font-size: 120%;" | Laplace Transform Pairs
 
! colspan="4" align="left" style="background: #b79256; font-size: 120%;" | Laplace Transform Pairs
 
|- style="background: #e4bc7e; font-size: 110%;" align="center"
 
|- style="background: #e4bc7e; font-size: 110%;" align="center"
! width="75px"|Transform Pair !! Signal
+
! width="75px"|Note !! Signal
 
! width="170px"|Transform  
 
! width="170px"|Transform  
 
! width="170px"|ROC  
 
! width="170px"|ROC  

Revision as of 07:07, 30 October 2009

Laplace Transform Pairs and Properties
Laplace Transform Pairs
Note Signal Transform ROC
1 $ \,\!\delta(t) $ $ 1 $ $ All\,\, s $
2 $ \,\! u(t) $ $ \frac{1}{s} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > 0 $
3 $ \,\! -u(-t) $ $ \frac{1}{s} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace < 0 $
4 $ \frac{t^{n-1}}{(n-1)!}u(t) $ $ \frac{1}{s^{n}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > 0 $
5 $ -\frac{t^{n-1}}{(n-1)!}u(-t) $ $ \frac{1}{s^{n}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace < 0 $
6 $ \,\!e^{-\alpha t}u(t) $ $ \frac{1}{s+\alpha} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > -\alpha $
7 $ \,\! -e^{-\alpha t}u(-t) $ $ \frac{1}{s+\alpha} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace < -\alpha $
8 $ \frac{t^{n-1}}{(n-1)!}e^{-\alpha t}u(t) $ $ \frac{1}{(s+\alpha )^{n}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > -\alpha $
9 $ -\frac{t^{n-1}}{(n-1)!}e^{-\alpha t}u(-t) $ $ \frac{1}{(s+\alpha )^{n}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace < -\alpha $
10 $ \,\!\delta (t - T) $ $ \,\! e^{-sT} $ $ All\,\, s $
11 $ \,\![cos( \omega_0 t)]u(t) $ $ \frac{s}{s^2+\omega_0^{2}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > 0 $
12 $ \,\![sin( \omega_0 t)]u(t) $ $ \frac{\omega_0}{s^2+\omega_0^{2}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > 0 $
13 $ \,\![e^{-\alpha t}cos( \omega_0 t)]u(t) $ $ \frac{s+\alpha}{(s+\alpha)^{2}+\omega_0^{2}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > -\alpha $
14 $ \,\![e^{-\alpha t}sin( \omega_0 t)]u(t) $ $ \frac{\omega_0}{(s+\alpha)^{2}+\omega_0^{2}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > -\alpha $
15 $ u_n(t) = \frac{d^{n}\delta (t)}{dt^{n}} $ $ \,\!s^{n} $ $ All\,\, s $
16 $ u_{-n}(t) = \underbrace{u(t) *\dots * u(t)}_{n\,\,times} $ $ \frac{1}{s^{n}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > 0 $

Back to Collective Table

Alumni Liaison

Followed her dream after having raised her family.

Ruth Enoch, PhD Mathematics