Line 16: | Line 16: | ||
! colspan="2" style="background: #eee;" | Euler's Formula and Related Equalities | ! colspan="2" style="background: #eee;" | Euler's Formula and Related Equalities | ||
|- | |- | ||
− | | align="right" style="padding-right: 1em;" | Euler's formula || <math>e^{jw_0t}= | + | | align="right" style="padding-right: 1em;" | Euler's formula || <math>e^{jw_0t}=\cos w_0t+j\sin w_0t</math> |
|- | |- | ||
− | | align="right" style="padding-right: 1em;" | Cosine function in terms of complex exponentials|| <math>cos\theta=\frac{e^{j\theta}+e^{-j\theta}}{2}</math> | + | | align="right" style="padding-right: 1em;" | Cosine function in terms of complex exponentials|| <math>\cos\theta=\frac{e^{j\theta}+e^{-j\theta}}{2}</math> |
|- | |- | ||
− | | align="right" style="padding-right: 1em;" | Sine function in terms of complex exponentials||<math>sin\theta=\frac{e^{j\theta}-e^{-j\theta}}{2j}</math> | + | | align="right" style="padding-right: 1em;" | Sine function in terms of complex exponentials||<math>\sin\theta=\frac{e^{j\theta}-e^{-j\theta}}{2j}</math> |
|- | |- |
Revision as of 09:08, 28 October 2009
Some General Purpose Formulas and Definitions
General Purpose Formulas | |
---|---|
Series | |
Finite Geometric Series Formula | $ \sum_{k=0}^n x^k = \left\{ \begin{array}{ll} \frac{1-x^{n+1}}{1-x}&, \text{ if } x\neq 1\\ n+1 &, \text{ else}\end{array}\right. $ |
Infinite Geometric Series Formula | $ \sum_{k=0}^n x^k = \left\{ \begin{array}{ll} \frac{1}{1-x}&, \text{ if } |x|\leq 1\\ \text{diverges} &, \text{ else }\end{array}\right. $ |
Euler's Formula and Related Equalities | |
Euler's formula | $ e^{jw_0t}=\cos w_0t+j\sin w_0t $ |
Cosine function in terms of complex exponentials | $ \cos\theta=\frac{e^{j\theta}+e^{-j\theta}}{2} $ |
Sine function in terms of complex exponentials | $ \sin\theta=\frac{e^{j\theta}-e^{-j\theta}}{2j} $ |
Definition of some Basic Functions (what engineers call "Signals") | |
sinc function | $ sinc(\theta)=\frac{sin(\pi\theta)}{\pi\theta} $ |
CT unit step function | $ u(t)=\left\{ \begin{array}{ll}1, & t\geq 0 \\ 0, & \text{ else}\end{array}\right., \text{ for }t\in {\mathbb R} $ |
DT unit step function | $ u[n]=\left\{ \begin{array}{ll}1, & n\geq 0 \\ 0, & \text{ else}\end{array}\right., \text{ for }n\in {\mathbb Z} $ |
Function (or Signal) Metrics | |
CT signal energy | $ E_\infty=\int_{-\infty}^\infty | x(t) |^2 dt $ |
DT signal energy | $ E_\infty=\sum_{n=-\infty}^\infty | x[n] |^2 $ |