Line 30: Line 30:
 
|-  
 
|-  
 
| align="right" style="padding-right: 1em;" | DT unit step function || <math>u[n]=\left\{ \begin{array}{ll}1, & n\geq 0 \\ 0, & \text{ else}\end{array}\right., \text{ for }n\in {\mathbb Z} </math>
 
| align="right" style="padding-right: 1em;" | DT unit step function || <math>u[n]=\left\{ \begin{array}{ll}1, & n\geq 0 \\ 0, & \text{ else}\end{array}\right., \text{ for }n\in {\mathbb Z} </math>
 +
|-
 +
|-
 +
! colspan="2" style="background: #eee;" | Function (or Signal) Metrics
 +
|-
 +
| align="right" style="padding-right: 1em;" | CT signal energy || <math>E_\infty=\int_{-\infty}^\infty | x(t) |^2 dt </math>
 +
|-
 +
| align="right" style="padding-right: 1em;" | DT signal energy || <math>E_\infty=\sum_{n=-\infty}^\infty | x[n] |^2 </math>
 
|-  
 
|-  
 
|}
 
|}

Revision as of 09:07, 28 October 2009

Some General Purpose Formulas and Definitions

General Purpose Formulas
Series
Finite Geometric Series Formula $ \sum_{k=0}^n x^k = \left\{ \begin{array}{ll} \frac{1-x^{n+1}}{1-x}&, \text{ if } x\neq 1\\ n+1 &, \text{ else}\end{array}\right. $
Infinite Geometric Series Formula $ \sum_{k=0}^n x^k = \left\{ \begin{array}{ll} \frac{1}{1-x}&, \text{ if } |x|\leq 1\\ \text{diverges} &, \text{ else }\end{array}\right. $
Euler's Formula and Related Equalities
Euler's formula $ e^{jw_0t}=cosw_0t+jsinw_0t $
Cosine function in terms of complex exponentials $ cos\theta=\frac{e^{j\theta}+e^{-j\theta}}{2} $
Sine function in terms of complex exponentials $ sin\theta=\frac{e^{j\theta}-e^{-j\theta}}{2j} $
Definition of some Basic Functions (what engineers call "Signals")
sinc function $ sinc(\theta)=\frac{sin(\pi\theta)}{\pi\theta} $
CT unit step function $ u(t)=\left\{ \begin{array}{ll}1, & t\geq 0 \\ 0, & \text{ else}\end{array}\right., \text{ for }t\in {\mathbb R} $
DT unit step function $ u[n]=\left\{ \begin{array}{ll}1, & n\geq 0 \\ 0, & \text{ else}\end{array}\right., \text{ for }n\in {\mathbb Z} $
Function (or Signal) Metrics
CT signal energy $ E_\infty=\int_{-\infty}^\infty | x(t) |^2 dt $
DT signal energy $ E_\infty=\sum_{n=-\infty}^\infty | x[n] |^2 $

Back to Collective Table

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal