Line 20: Line 20:
 
| align="right" style="padding-right: 1em;" | Cosine function in terms of complex exponentials|| <math>cos\theta=\frac{e^{j\theta}+e^{-j\theta}}{2}</math>
 
| align="right" style="padding-right: 1em;" | Cosine function in terms of complex exponentials|| <math>cos\theta=\frac{e^{j\theta}+e^{-j\theta}}{2}</math>
 
|-
 
|-
| align="right" style="padding-right: 1em;" | [[Sine function in terms of complex exponential_ECE301Fall2008mboutin]] || {{:Sine function in terms of complex exponential_ECE301Fall2008mboutin}}
+
| align="right" style="padding-right: 1em;" | Sine function in terms of complex exponentials||<math>sin\theta=\frac{e^{j\theta}-e^{-j\theta}}{2j}</math>
 +
 
 
|-
 
|-
 
! colspan="2" style="background: #eee;" | Definition of some Basic Functions (what engineers call "Signals")
 
! colspan="2" style="background: #eee;" | Definition of some Basic Functions (what engineers call "Signals")

Revision as of 04:53, 27 October 2009

Some General Purpose Formulas and Definitions

General Purpose Formulas
Series
Finite Geometric Series Formula $ \sum_{k=0}^n x^k = \left\{ \begin{array}{ll} \frac{1-x^{n+1}}{1-x}&, \text{ if } x\neq 1\\ n+1 &, \text{ else}\end{array}\right. $
Infinite Geometric Series Formula $ \sum_{k=0}^n x^k = \left\{ \begin{array}{ll} \frac{1}{1-x}&, \text{ if } |x|\leq 1\\ \text{diverges} &, \text{ else }\end{array}\right. $
Euler's Formula and Related Equalities
Euler's formula $ e^{jw_0t}=cosw_0t+jsinw_0t $
Cosine function in terms of complex exponentials $ cos\theta=\frac{e^{j\theta}+e^{-j\theta}}{2} $
Sine function in terms of complex exponentials $ sin\theta=\frac{e^{j\theta}-e^{-j\theta}}{2j} $
Definition of some Basic Functions (what engineers call "Signals")
sinc function_ECE301Fall2008mboutin $ sinc(\theta)=\frac{sin(\pi\theta)}{\pi\theta} $

Back to Collective Table

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood