Line 1: Line 1:
 +
=Some General Purpose Formulas and Definitions=
  
  
=SomeGeneralPurposeFormulas1=
+
{|
 +
|-
 +
! colspan="2" style="background: #bbb; font-size: 110%;" | General Purpose Formulas
 +
|-
 +
! colspan="2" style="background: #eee;" | Series
 +
|-
 +
| align="right" style="padding-right: 1em;" | [[Finite Geometric Series Formula_ECE301Fall2008mboutin]] || {{:Finite Geometric Series Formula_ECE301Fall2008mboutin}}
 +
|-
 +
| align="right" style="padding-right: 1em;" | [[Infinite Geometric Series Formula_ECE301Fall2008mboutin]] || {{:Infinite Geometric Series Formula_ECE301Fall2008mboutin}}
 +
|-
 +
! colspan="2" style="background: #eee;" | Euler's Formula
 +
|-
 +
| align="right" style="padding-right: 1em;" | [[Complex exponential in terms of sinusoidal signals_ECE301Fall2008mboutin]] || {{:Complex exponential in terms of sinusoidal signals_ECE301Fall2008mboutin}}
 +
|-
 +
| align="right" style="padding-right: 1em;" | [[Cosine function in terms of complex exponential_ECE301Fall2008mboutin]] || {{:Cosine function in terms of complex exponential_ECE301Fall2008mboutin}}
 +
|-
 +
| align="right" style="padding-right: 1em;" | [[Sine function in terms of complex exponential_ECE301Fall2008mboutin]] || {{:Sine function in terms of complex exponential_ECE301Fall2008mboutin}}
 +
|-
 +
! colspan="2" style="background: #eee;" | Definition of some Basic Functions (what engineers call "Signals")
 +
|-
 +
| align="right" style="padding-right: 1em;" | [[sinc function_ECE301Fall2008mboutin]] || {{:sinc function_ECE301Fall2008mboutin}}
 +
|-
 +
|}
  
 
+
-----
 
+
[[ MegaCollectiveTableTrial1|Back to Collective Table]]
Put your content here . . .
+
 
+
 
+
 
+
 
+
[[ MegaCollectiveTableTrial1|Back to MegaCollectiveTableTrial1]]
+

Revision as of 04:47, 27 October 2009

Some General Purpose Formulas and Definitions

General Purpose Formulas
Series
Finite Geometric Series Formula_ECE301Fall2008mboutin $ \sum_{k=0}^n x^k = \left\{ \begin{array}{ll} \frac{1-x^{n+1}}{1-x}&, \text{ if } x\neq 1\\ n+1 &, \text{ else}\end{array}\right. $
Infinite Geometric Series Formula_ECE301Fall2008mboutin $ \sum_{k=0}^\infty x^k = \left\{ \begin{array}{ll} \frac{1}{1-x}&, \text{ if } |x|\leq 1\\ \text{diverges} &, \text{ else }\end{array}\right. $
Euler's Formula
Complex exponential in terms of sinusoidal signals_ECE301Fall2008mboutin $ e^{jw_0t}=cosw_0t+jsinw_0t $
Cosine function in terms of complex exponential_ECE301Fall2008mboutin $ cos\theta=\frac{e^{j\theta}+e^{-j\theta}}{2} $
Sine function in terms of complex exponential_ECE301Fall2008mboutin $ sin\theta=\frac{e^{j\theta}-e^{-j\theta}}{2j} $
Definition of some Basic Functions (what engineers call "Signals")
sinc function_ECE301Fall2008mboutin $ sinc(\theta)=\frac{sin(\pi\theta)}{\pi\theta} $

Back to Collective Table

Alumni Liaison

Recent Math PhD now doing a post-doctorate at UC Riverside.

Kuei-Nuan Lin