Line 22: | Line 22: | ||
'''Linearity''' | '''Linearity''' | ||
+ | |||
For all <math>a,b</math> in the complex plane, and all <math>x_1[n],x_2[n]</math> with the same period N | For all <math>a,b</math> in the complex plane, and all <math>x_1[n],x_2[n]</math> with the same period N | ||
Line 27: | Line 28: | ||
'''Time-Shifting''' | '''Time-Shifting''' | ||
+ | |||
For all <math>n_0</math> included in Z, and all x[n] with period N | For all <math>n_0</math> included in Z, and all x[n] with period N | ||
<math>x[n - n_0] \longrightarrow X[k]e^{-j \frac{2{\pi}}{N} n_0 k}</math> | <math>x[n - n_0] \longrightarrow X[k]e^{-j \frac{2{\pi}}{N} n_0 k}</math> | ||
+ | |||
+ | '''Modulation''' | ||
+ | |||
+ | <math>x[n]e^{j \frac{2 \pi}{N}k_0n} \longrightarrow X[k-k_0]</math> | ||
+ | |||
+ | '''Duality''' | ||
+ | |||
+ | <math>X[n] \longrightarrow Nx[-k]</math>, where X[n] is the DFT of a DFT | ||
+ | |||
+ | '''Parseval's Relation''' | ||
+ | |||
+ | <math>\sum_{n=0}^{N-1} |x[n]|^2 = \frac{1}{N} \sum_{k=0}^{N-1} |X[k]|^2</math> | ||
+ | |||
+ | '''Initial Value''' | ||
+ | |||
+ | <math>\sum_{n=0}^{N-1} x[n] = X[0]</math> | ||
+ | |||
+ | '''Periodicity''' | ||
+ | |||
+ | <math>X[k + N] = X[k]</math> for all k. X[k] is periodic with the same period N as x[n]. | ||
+ | |||
+ | '''Relation to DTFT''' | ||
+ | |||
+ | <math>X[k] = Y(k \frac{ 2 \pi}{N})</math> where Y(w) is the DTFT of signal <math>y[n] = (^{x[n], n=0,...,N-1}_{0, else}</math> | ||
+ | |||
+ | ---- | ||
+ | |||
+ | == Important DFT Pairs == | ||
+ | |||
+ | |||
+ | |||
+ | |||
[[ECE438_(BoutinFall2009)|Back to ECE438 course page]] | [[ECE438_(BoutinFall2009)|Back to ECE438 course page]] |
Revision as of 06:05, 28 September 2009
DFT ( Discrete Fourier Transform )
The DFT is a finite sum, so it can be computed using a computer. Used for discrete, time-limited signals, or discrete periodic signals. The DFT of a signal will be discrete and have a finite duration.
Definition
DFT
- $ X(k) = \sum_{n=0}^{N-1}{x[n]e^{-j \frac{2{\pi}}{N}kn}}, k = 0, 1, 2, ..., N-1 $
Inverse DFT (IDFT)
- $ x[n] = \frac{1}{N}\sum_{k=0}^{N-1}{X(k)e^{j \frac{2{\pi}}{N}kn}}, n = 0, 1, 2, ..., N-1 $
Properties
Linearity
For all $ a,b $ in the complex plane, and all $ x_1[n],x_2[n] $ with the same period N
$ ax_1[n] + bx_2[n] \longrightarrow aX_1[k] + bX_2[k] $
Time-Shifting
For all $ n_0 $ included in Z, and all x[n] with period N
$ x[n - n_0] \longrightarrow X[k]e^{-j \frac{2{\pi}}{N} n_0 k} $
Modulation
$ x[n]e^{j \frac{2 \pi}{N}k_0n} \longrightarrow X[k-k_0] $
Duality
$ X[n] \longrightarrow Nx[-k] $, where X[n] is the DFT of a DFT
Parseval's Relation
$ \sum_{n=0}^{N-1} |x[n]|^2 = \frac{1}{N} \sum_{k=0}^{N-1} |X[k]|^2 $
Initial Value
$ \sum_{n=0}^{N-1} x[n] = X[0] $
Periodicity
$ X[k + N] = X[k] $ for all k. X[k] is periodic with the same period N as x[n].
Relation to DTFT
$ X[k] = Y(k \frac{ 2 \pi}{N}) $ where Y(w) is the DTFT of signal $ y[n] = (^{x[n], n=0,...,N-1}_{0, else} $