Line 3: | Line 3: | ||
== DFT ( Discrete Fourier Transform ) == | == DFT ( Discrete Fourier Transform ) == | ||
+ | The DFT is a finite sum, so it can be computed using a computer. Used for discrete, time-limited signals, or discrete periodic signals. | ||
Line 9: | Line 10: | ||
'''DFT''' | '''DFT''' | ||
− | *<math>X(k) = \sum_{n=0}^{N-1}{x[n]e^{- | + | *<math>X(k) = \sum_{n=0}^{N-1}{x[n]e^{-j \frac{2{\pi}}{N}kn}}, k = 0, 1, 2, ..., N-1</math> |
'''Inverse DFT (IDFT)''' | '''Inverse DFT (IDFT)''' | ||
− | *<math>x[n] = \frac{1}{N}\sum_{k=0}^{N-1}{X(k)e^{ | + | *<math>x[n] = \frac{1}{N}\sum_{k=0}^{N-1}{X(k)e^{j \frac{2{\pi}}{N}kn}}, n = 0, 1, 2, ..., N-1</math> |
[[ECE438_(BoutinFall2009)|Back to ECE438 course page]] | [[ECE438_(BoutinFall2009)|Back to ECE438 course page]] |
Revision as of 09:01, 25 September 2009
DFT ( Discrete Fourier Transform )
The DFT is a finite sum, so it can be computed using a computer. Used for discrete, time-limited signals, or discrete periodic signals.
Definition
DFT
- $ X(k) = \sum_{n=0}^{N-1}{x[n]e^{-j \frac{2{\pi}}{N}kn}}, k = 0, 1, 2, ..., N-1 $
Inverse DFT (IDFT)
- $ x[n] = \frac{1}{N}\sum_{k=0}^{N-1}{X(k)e^{j \frac{2{\pi}}{N}kn}}, n = 0, 1, 2, ..., N-1 $