Line 31: Line 31:
  
 
Whoskins, I am having problems with the same questions, I think they want you to simplify <math>exp(Z^2)</math> to get the magnitude and angle, I got them as <math>exp(x^2-y^2)</math> and <math>2xy</math>. Now each of these are constant and you just have to plot the two. I think this is how you do it at least. I am going to use MATLAB to plot them.--[[User:Kfernan|Kevin Fernandes]]
 
Whoskins, I am having problems with the same questions, I think they want you to simplify <math>exp(Z^2)</math> to get the magnitude and angle, I got them as <math>exp(x^2-y^2)</math> and <math>2xy</math>. Now each of these are constant and you just have to plot the two. I think this is how you do it at least. I am going to use MATLAB to plot them.--[[User:Kfernan|Kevin Fernandes]]
 +
 +
"Is it asking for the curve of the values of z that make the conditions true?"
 +
-I talked to Bobby (the grader) today and he seemed to think that this was the case. If this is the case then Kevin has the right idea.--[[User:Davis29|Matt Davis]]

Revision as of 12:30, 24 September 2009


Homework 4

HWK 4 problems

Hint for IV.6.3 --Steve Bell

We assume $ (f)''=f $ on $ \mathbb C $.

Notice that

$ (e^z f)''=e^zf +2e^zf'+e^zf''=2(e^zf + e^zf')=2(e^zf)'. $

Let $ g=(e^zf)'. $ Then $ g'=2g $ and now you can use the theorem from class that concerns solutions of this first order complex ODE. By the way, you will also need to use the fact that if two analytic functions on the complex plane have the same derivative, then they must differ by a constant.


Could you just substitute the f in the form they provided into the ODE to prove that you can assume the solution is of that form? --Adrian Delancy

Adrian, if you plug that form into the ODE, you are only verifying that those ARE solutions to the equation. The harder and more interesting part is to show that ONLY functions of that form are solutions. If you follow my hint above, you'll get an expression for g, and then you'll need to antidifferentiate and then mess around with a little linear algebra to see that f has to be of the form mentioned in the problem. --Steve Bell


Question on IV.5.2 (And subsequently IV.5.3) If anyone could, I'd like some clarification. I'm confused on what the question is asking. Is it asking for the curve of the values of z that make the conditions true? --Weston Hoskins


Whoskins, I am having problems with the same questions, I think they want you to simplify $ exp(Z^2) $ to get the magnitude and angle, I got them as $ exp(x^2-y^2) $ and $ 2xy $. Now each of these are constant and you just have to plot the two. I think this is how you do it at least. I am going to use MATLAB to plot them.--Kevin Fernandes

"Is it asking for the curve of the values of z that make the conditions true?" -I talked to Bobby (the grader) today and he seemed to think that this was the case. If this is the case then Kevin has the right idea.--Matt Davis

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett