(One intermediate revision by one other user not shown)
Line 1: Line 1:
                                                '''Inverse Z-transform
+
*<span style="color:green"> Hmm... This looks a lot like my course notes... Perhaps you want to write this somewhere, otherwise one might think that you are pretending that you wrote this yourself. --[[User:Mboutin|Mboutin]] 12:26, 23 September 2009 (UTC) </span>
 +
 
 +
                                                '''Inverse Z-transform
 
'''
 
'''
 
  <math> x[n] =  \frac{1}{2 \prod j} \oint_C {X(z)} {z ^ {n-1}} dz \ </math>
 
  <math> x[n] =  \frac{1}{2 \prod j} \oint_C {X(z)} {z ^ {n-1}} dz \ </math>
Line 63: Line 65:
 
<math>X(z) = \frac{1}{(1-z)} \ </math>
 
<math>X(z) = \frac{1}{(1-z)} \ </math>
 
     <math> = \frac{1}{z(\frac{1}{z}-1)} \ </math>
 
     <math> = \frac{1}{z(\frac{1}{z}-1)} \ </math>
     <math>= \frac {-1}{z} {\frac{1}{1-\frac{1}{z}}} \ </math>,   observe <math>\ |\frac {1}{z}|< 1 \ </math>
+
     <math>= \frac {-1}{z} {\frac{1}{1-\frac{1}{z}}} \ </math>    ,observe <math>\ |\frac {1}{z}|< 1 \ </math>
  
 
  Now by using the geometric series formula, the series can be formed as  
 
  Now by using the geometric series formula, the series can be formed as  

Latest revision as of 07:27, 23 September 2009

  • Hmm... This looks a lot like my course notes... Perhaps you want to write this somewhere, otherwise one might think that you are pretending that you wrote this yourself. --Mboutin 12:26, 23 September 2009 (UTC)
                                               Inverse Z-transform

$  x[n] =  \frac{1}{2 \prod j} \oint_C {X(z)} {z ^ {n-1}} dz \  $
where C is a closed counterwise countour inside the ROC of the Z- transform and around the origin.
            $  = \sum_{poles  a_i ( X(z)  z ^ {n-1})}  Residue ( X(z)  z ^ {n-1}) \  $
            $  = \sum_{poles  a_i ( X(z)  z ^ {n-1})} \  $  Coefficient of degree (-1) term on the power series expansion of $  ( X(z)  z ^ {n-1}) \  $  $  about a_i \  $


So inverting X(z) involves power series.


$ f(X)= \sum_{n=0}^\infty \frac{f^n (X_0) (X-X_0)^{n}}{n!} \ $ , near $ X_0 $

$ \frac{1}{(1-x)} = \sum_{n=0}^\infty X^n \ $ , geometric series where |X|< 1


Computing equivalent to complex integration formula's

1) Write X(z) as a power series.

$ X(z) = \sum_{n=-\infty}^{\infty} \ C_n z^n \ $ , series must converge for all z's on the ROC of X(z)

2) Observe that

$ X(z) = \sum_{n=-\infty}^{\infty} \ x[n] z^{-n} \ $

i.e.,

$ X(z) = \sum_{n=-\infty}^{\infty} \ x[-n] z^n \ $

3) By comparison

$ X[-n] = \ C_n \ $

or

$ X[n] = \ C_ {-n} $



Example 1:

$ X(z) = \frac{1}{(1-z)} \ $

Two possible ROC

Case 1: |z|<1

$ X(z) = \sum_{n=0}^\infty z^n \ $

   $   =  \sum_{k=-\infty}^{0} \ z^{-k} \  $
    $  =  \sum_{n=-\infty}^{\infty} \ u(-k) z^{-k} \  $

so, x[n]=u[-n]

Consistent as having inside a circle as ROC.

Case 2: |z|>1

$ X(z) = \frac{1}{(1-z)} \ $

   $  = \frac{1}{z(\frac{1}{z}-1)} \  $
    $ = \frac {-1}{z} {\frac{1}{1-\frac{1}{z}}} \  $    ,observe $ \ |\frac {1}{z}|< 1 \  $
Now by using the geometric series formula, the series can be formed as 
      $ = \frac {-1}{z} \sum_{n=0}^\infty  (\frac {1}{z})^{n} \  $
      $ = - \sum_{n=0}^\infty z^{-n-1} \  $

Let k=(n+1)

      $ = - \sum_{k=1}^\infty z^{-k} \  $
      $ = \sum_{k=1}^\infty -u(k-1) z^{-k} \  $

By coparison with the Z- transform formula

$ x[n]= -u[n-1] \ $

Consistent as having outside of circle as the ROC.

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett