Line 5: Line 5:
 
[http://www.math.purdue.edu/~bell/MA425/hwk3.pdf HWK 3 problems]
 
[http://www.math.purdue.edu/~bell/MA425/hwk3.pdf HWK 3 problems]
  
Hint for III.9.2 --[[User:Bell|Bell]]
+
Hint for III.9.2 --[[User:Bell|Steve Bell]]
  
 
Suppose <math>L(z)=\frac{az+b}{cz+d}</math> is an LFT such that
 
Suppose <math>L(z)=\frac{az+b}{cz+d}</math> is an LFT such that
Line 21: Line 21:
 
the two unknowns, A and B.
 
the two unknowns, A and B.
  
Hint for the last problem --[[User:Bell|Bell]]
+
Hint for the last problem --[[User:Bell|Steve Bell]]
  
 
<math>\left|\frac{z-a}{1-\bar a z}\right|<1</math>
 
<math>\left|\frac{z-a}{1-\bar a z}\right|<1</math>

Latest revision as of 06:45, 23 September 2009


Homework 3

HWK 3 problems

Hint for III.9.2 --Steve Bell

Suppose $ L(z)=\frac{az+b}{cz+d} $ is an LFT such that L maps the point at infinity to 1. If c=0, L cannot map the point infinity to one. Hence, c is not zero and we may compute

$ \lim_{z\to\infty}L(z)=\frac{a}{c}, $

and we conclude that a=c. Divide the numerator and denominator in the formula for L by c in order to be able to write

$ L(z)=\frac{z+A}{z+B}. $

Now, the two conditions L(i)=i and L(-i)=-i give two equations for the two unknowns, A and B.

Hint for the last problem --Steve Bell

$ \left|\frac{z-a}{1-\bar a z}\right|<1 $

if and only if

$ \left|\frac{z-a}{1-\bar a z}\right|^2<1 $

if and only if

$ |z-a|^2<|1-\bar a z|^2 $

if and only if

$ (z-a)\overline{(z-a)}<(1-\bar a z)\overline{(1-\bar a z)} $

if and only if

$ |z|^2-\bar a z-a\bar z +|a|^2<1-\bar a z-a\bar z-|a|^2|z|^2 $

and then show that this inequality is true if |a|<1 and |z|<1.

Alumni Liaison

Followed her dream after having raised her family.

Ruth Enoch, PhD Mathematics