(New page: Category:MA425Fall2009 ==Homework 3== [http://www.math.purdue.edu/~bell/MA425/hwk3.pdf HWK 3 problems])
 
 
(4 intermediate revisions by the same user not shown)
Line 4: Line 4:
  
 
[http://www.math.purdue.edu/~bell/MA425/hwk3.pdf HWK 3 problems]
 
[http://www.math.purdue.edu/~bell/MA425/hwk3.pdf HWK 3 problems]
 +
 +
Hint for III.9.2 --[[User:Bell|Steve Bell]]
 +
 +
Suppose <math>L(z)=\frac{az+b}{cz+d}</math> is an LFT such that
 +
L maps the point at infinity to 1.  If c=0, L cannot map the
 +
point infinity to one.  Hence, c is not zero and we may compute
 +
 +
<math>\lim_{z\to\infty}L(z)=\frac{a}{c},</math>
 +
 +
and we conclude that a=c.  Divide the numerator and denominator
 +
in the formula for L by c in order to be able to write
 +
 +
<math>L(z)=\frac{z+A}{z+B}.</math>
 +
 +
Now, the two conditions L(i)=i and L(-i)=-i give two equations for
 +
the two unknowns, A and B.
 +
 +
Hint for the last problem --[[User:Bell|Steve Bell]]
 +
 +
<math>\left|\frac{z-a}{1-\bar a z}\right|<1</math>
 +
 +
if and only if
 +
 +
<math>\left|\frac{z-a}{1-\bar a z}\right|^2<1</math>
 +
 +
if and only if
 +
 +
<math>|z-a|^2<|1-\bar a z|^2</math>
 +
 +
if and only if
 +
 +
<math>(z-a)\overline{(z-a)}<(1-\bar a z)\overline{(1-\bar a z)}</math>
 +
 +
if and only if
 +
 +
<math>|z|^2-\bar a z-a\bar z +|a|^2<1-\bar a z-a\bar z-|a|^2|z|^2</math>
 +
 +
and then show that this inequality is true if |a|<1 and |z|<1.

Latest revision as of 06:45, 23 September 2009


Homework 3

HWK 3 problems

Hint for III.9.2 --Steve Bell

Suppose $ L(z)=\frac{az+b}{cz+d} $ is an LFT such that L maps the point at infinity to 1. If c=0, L cannot map the point infinity to one. Hence, c is not zero and we may compute

$ \lim_{z\to\infty}L(z)=\frac{a}{c}, $

and we conclude that a=c. Divide the numerator and denominator in the formula for L by c in order to be able to write

$ L(z)=\frac{z+A}{z+B}. $

Now, the two conditions L(i)=i and L(-i)=-i give two equations for the two unknowns, A and B.

Hint for the last problem --Steve Bell

$ \left|\frac{z-a}{1-\bar a z}\right|<1 $

if and only if

$ \left|\frac{z-a}{1-\bar a z}\right|^2<1 $

if and only if

$ |z-a|^2<|1-\bar a z|^2 $

if and only if

$ (z-a)\overline{(z-a)}<(1-\bar a z)\overline{(1-\bar a z)} $

if and only if

$ |z|^2-\bar a z-a\bar z +|a|^2<1-\bar a z-a\bar z-|a|^2|z|^2 $

and then show that this inequality is true if |a|<1 and |z|<1.

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood