Line 61: Line 61:
 
&= rect \left (\frac{t - \tfrac {T}{2} }{T}\right) * {\color{Blue}\sum_k x(kT)\  \delta (t - kT)} \\
 
&= rect \left (\frac{t - \tfrac {T}{2} }{T}\right) * {\color{Blue}\sum_k x(kT)\  \delta (t - kT)} \\
 
&= rect \left (\frac{t - \tfrac {T}{2} }{T}\right) * {\color{OliveGreen} X_s(t)}\\
 
&= rect \left (\frac{t - \tfrac {T}{2} }{T}\right) * {\color{OliveGreen} X_s(t)}\\
\therefore\ x_r(t) &= h_{zo} (t) * X_s(t)\\
 
 
\end{align}
 
\end{align}
 
</math>
 
</math>
 
</div>
 
</div>
 +
 +
<div style="font-family: Verdana, sans-serif; font-size: 12px; text-align: center; width: 30%; margin: 0px; border: 1px solid #aaa; padding: 1em;"> <math>\therefore\ x_r(t) = h_{zo} (t) * X_s(t)</math>
 +
</div>
 +
 +
  
 
<math>*** Image \quad goes \quad here***\,\!</math>
 
<math>*** Image \quad goes \quad here***\,\!</math>
 +
  
 
In the frequency domain,
 
In the frequency domain,
  
<math>hahaha\'\!</math>
+
<math>hahaha\,\!</math>
  
 
<math>*** Image \quad goes \quad here***\,\!</math>
 
<math>*** Image \quad goes \quad here***\,\!</math>
  
 
So even though <math>x_r(t)\,\!</math> is not band limited, its higher frequency components are attenuated because the <math>|H_{zo}(f)|\ \,\!</math> decreases as <math>|f|\ \,\!</math> increases.
 
So even though <math>x_r(t)\,\!</math> is not band limited, its higher frequency components are attenuated because the <math>|H_{zo}(f)|\ \,\!</math> decreases as <math>|f|\ \,\!</math> increases.

Revision as of 06:26, 23 September 2009

LECTURE on September 11, 2009

The perfect reconstruction of $ {x(t)}\,\! $ from $ x_s(t)\,\! $ is possible if $ X(f) = 0\,\! $ when $ |f| \ge \frac{1}{|2T|} $

PROOF: Look at the graph of $ X_s(f)\,\! $

$ *** Image \quad goes \quad here***\,\! $

To avoid aliasing,

$ \frac{1}{T}\ - f_M \ge f_M $ $ \quad\iff\quad $ $ \frac{1}{T}\ \ge 2f_M $

To recover the signal, we will require a low pass filter with gain $ T\,\! $ and cutoff, $ \frac{1}{2T} $

Let $ x_r(t)\,\! $ be the reconstructed signal. Then,

$ X_(f) = H_r(f) X_s(f)\,\! $

where,

$ H_r(f) = T rect(f)\,\! $

So,

$ \begin{align} x_r(t) &= h_r(t) * {\color{OliveGreen} X_s(t)} \\ &= sinc \left (\frac{t}{T}\right) * {\color{Blue} \sum_k X(kT) \delta(t-kT)} \\ &= \sum_k X(kT) sinc \left (\frac{t}{T}\right) * \delta(t-kT) \\ &= \sum_k X(kT) sinc \left (\frac{t - kT}{T}\right)\\ \end{align} $

Recall, $ \quad sinc(x) = 0 \quad \iff \quad x = \pm 1, \pm 2, \pm 3 ... \,\! $


$ *** Image \quad goes \quad here***\,\! $

At all integer multiples of T,

$ x_r(nT) = X(nT)\,\! $

If Nyquist is satisfied, $ \quad x_r(nT) = X(nT)\quad \forall \quad 't'\,\! $

Contrast this reconstruction with the zero-order hold,


$ *** Image \quad goes \quad here***\,\! $


$ \qquad \Rightarrow piecewise\ construct\ approximation\ $


$ \begin{align} x_r(t) &= \sum_k x(kT)\ rect \left (\frac{t - \tfrac {T}{2} - kT}{T}\right) \\ &= \sum_k x(kT)\ rect \left (\frac{t - \tfrac {T}{2} }{T}\right) * \delta (t - kT)\\ &= rect \left (\frac{t - \tfrac {T}{2} }{T}\right) * \sum_k x(kT)\ \delta (t - kT) \qquad and\ if\ we\ look\ clearly,\ \\ &= rect \left (\frac{t - \tfrac {T}{2} }{T}\right) * {\color{Blue}\sum_k x(kT)\ \delta (t - kT)} \\ &= rect \left (\frac{t - \tfrac {T}{2} }{T}\right) * {\color{OliveGreen} X_s(t)}\\ \end{align} $

$ \therefore\ x_r(t) = h_{zo} (t) * X_s(t) $


$ *** Image \quad goes \quad here***\,\! $


In the frequency domain,

$ hahaha\,\! $

$ *** Image \quad goes \quad here***\,\! $

So even though $ x_r(t)\,\! $ is not band limited, its higher frequency components are attenuated because the $ |H_{zo}(f)|\ \,\! $ decreases as $ |f|\ \,\! $ increases.

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva