Line 3: Line 3:
 
To show some of the dangers of aliasing here are some examples.  
 
To show some of the dangers of aliasing here are some examples.  
  
Example 1: Say you have the signal <math> x(t)= cos(2*\Pi*50t) </math>
+
Example 1: Say you have the signal <math> x(t)= \cos(2*\Pi*50t) </math>
  
Then the Nyquist Frequency would be <math> 2*50Hz = 100Hz </math>
+
Then the Nyquist Frequency would be <math>2*50Hz = 100Hz</math>
  
 +
If we sampled the signal at over 100Hz then there would be no threat of aliasing, but let's see what happens when we sample at 75Hz.
 +
 +
At 75Hz, <math>T_s=\frac{1}{75}s</math>
 +
 +
Then, <math> x[n] = x(nT)=x(\frac{n}{75})=\cos(\frac{2*\pi*50*n}{75})</math>
 +
 +
<math> \mathfrak{F}(\omega)=\sum_{n=-\infty}^{\infty}x[n]*e^{-jn\omega}</math>
  
  
  
 
While sampling above the Nyquist Frequency will eliminate aliasing it is possible to sample below it and still not get aliasing, however this depends on the signal itself and is not recommended for general sampling.
 
While sampling above the Nyquist Frequency will eliminate aliasing it is possible to sample below it and still not get aliasing, however this depends on the signal itself and is not recommended for general sampling.

Revision as of 05:19, 23 September 2009

Aliasing is what occurs when a signal is not able to be completely reconstructed due to an insufficient sampling rate. This phenomenon may occur if the sampling frequency is below what is known as the Nyquist Frequency. The Nyquist Frequency can be expressed as: $ F_n = F_s*2 $ where $ F_s $ is the highest frequency in the signal.

To show some of the dangers of aliasing here are some examples.

Example 1: Say you have the signal $ x(t)= \cos(2*\Pi*50t) $

Then the Nyquist Frequency would be $ 2*50Hz = 100Hz $

If we sampled the signal at over 100Hz then there would be no threat of aliasing, but let's see what happens when we sample at 75Hz.

At 75Hz, $ T_s=\frac{1}{75}s $

Then, $ x[n] = x(nT)=x(\frac{n}{75})=\cos(\frac{2*\pi*50*n}{75}) $

$ \mathfrak{F}(\omega)=\sum_{n=-\infty}^{\infty}x[n]*e^{-jn\omega} $


While sampling above the Nyquist Frequency will eliminate aliasing it is possible to sample below it and still not get aliasing, however this depends on the signal itself and is not recommended for general sampling.

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett