Line 9: Line 9:
 
So inverting X(Z) involves power series.  
 
So inverting X(Z) involves power series.  
  
<math>f(X)= \sum_{n=0}^\infty \frac{f^n X_0 (X-X_0)^n}{n!}\</math>
+
<math>f(X)= \sum_{n=0}^\infty \frac{f^n X_0 (X-X_0)^n}{n!} \ </math>

Revision as of 04:41, 23 September 2009

                                                  Inverse Z-transform
$  x[n] = \oint_C {X(Z)}{Z ^ (n-1)} , dZ \  $
where C is a closed counterwise countour inside the ROC of the Z- transform and around the origin.
            $  = \sum_{poles  a_i ( X(Z) Z ^ (n-1))}  Residue ( X(Z) Z ^ (n-1)) \  $
            $  = \sum_{poles  a_i ( X(Z) Z ^ (n-1))}  Coefficient of degree (-1) term on the power series expansion of ( X(Z) Z ^ (n-1)) about a_i \  $

So inverting X(Z) involves power series.

$ f(X)= \sum_{n=0}^\infty \frac{f^n X_0 (X-X_0)^n}{n!} \ $

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett