Line 11: Line 11:
 
Notice that
 
Notice that
  
<math>(e^z f)''=e^zf +2e^zf'+e^zf''=2(e^zf + e^zf')=(e^zf)'.</math>
+
<math>(e^z f)''=e^zf +2e^zf'+e^zf''=2(e^zf + e^zf')=2(e^zf)'.</math>
  
Let <math>g=e^zf.</math>
+
Let <math>g=e^zf.</math> Then g'=2g.

Revision as of 03:37, 23 September 2009


Homework 4

HWK 4 problems

Hint for IV.6.3 --Steve Bell

We assume $ f''=f $ on $ \mathbb C $.

Notice that

$ (e^z f)''=e^zf +2e^zf'+e^zf''=2(e^zf + e^zf')=2(e^zf)'. $

Let $ g=e^zf. $ Then g'=2g.

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn