(New page: Category:MA425Fall2009 ==Homework 4== [http://www.math.purdue.edu/~bell/MA425/hwk4.txt HWK 4 problems]) |
|||
Line 4: | Line 4: | ||
[http://www.math.purdue.edu/~bell/MA425/hwk4.txt HWK 4 problems] | [http://www.math.purdue.edu/~bell/MA425/hwk4.txt HWK 4 problems] | ||
+ | |||
+ | Hint for IV.6.3 --[[User:Bell|Steve Bell]] | ||
+ | |||
+ | We assume <math>f''=f</math> on <math>\mathbb C</math>. | ||
+ | |||
+ | Notice that | ||
+ | |||
+ | <math>(e^z f)''=e^zf +2e^zf'+e^zf''=2(e^zf + e^zf')=(e^zf)'.</math> | ||
+ | |||
+ | Let <math>g=e^zf.</math> |
Revision as of 03:36, 23 September 2009
Homework 4
Hint for IV.6.3 --Steve Bell
We assume $ f''=f $ on $ \mathbb C $.
Notice that
$ (e^z f)''=e^zf +2e^zf'+e^zf''=2(e^zf + e^zf')=(e^zf)'. $
Let $ g=e^zf. $