(New page: == == Discrete Fourier Transform == == == definition == Let X[n] be a DT signal with period N DFT <math> X [k] = \sum_{k=0}^{N-1} x[n].e^{-J.2pi.kn/N}</math> IDFT <math> x [n] = (...)
 
Line 1: Line 1:
  
 
+
=== Discrete Fourier Transform ===
== == Discrete Fourier Transform == ==
+
  
  
Line 9: Line 8:
 
Let X[n] be a DT signal with period N
 
Let X[n] be a DT signal with period N
  
DFT  
+
DFT
 +
 
 
<math> X [k] = \sum_{k=0}^{N-1} x[n].e^{-J.2pi.kn/N}</math>
 
<math> X [k] = \sum_{k=0}^{N-1} x[n].e^{-J.2pi.kn/N}</math>
  
 
IDFT
 
IDFT
 +
 
<math> x [n] = (1/N) \sum_{k=0}^{N-1} X[k].e^{J.2pi.kn/N}</math>
 
<math> x [n] = (1/N) \sum_{k=0}^{N-1} X[k].e^{J.2pi.kn/N}</math>
  
  
 
== Derivation ==
 
== Derivation ==

Revision as of 21:07, 22 September 2009

Discrete Fourier Transform

definition

Let X[n] be a DT signal with period N

DFT

$ X [k] = \sum_{k=0}^{N-1} x[n].e^{-J.2pi.kn/N} $

IDFT

$ x [n] = (1/N) \sum_{k=0}^{N-1} X[k].e^{J.2pi.kn/N} $


Derivation

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn