(New page: Back to ECE438 course page ==Linearity == <math>\mathfrak{Z}\big\{ax[n]+by[n]\big\}=a\mathfrak{Z}\big\{x[n]\big\}+b\mathfrak{Z}\big\{y[n]\big\}\;\;\;\;\;\for...)
 
 
Line 25: Line 25:
 
<math>\mathfrak{Z}\big\{x[n-n_0]\big\}=\sum_{n=-\infty}^{\infty}x[n-n_0]z^{-n}\;\;\;let\;\;\;k = n-n_0</math>
 
<math>\mathfrak{Z}\big\{x[n-n_0]\big\}=\sum_{n=-\infty}^{\infty}x[n-n_0]z^{-n}\;\;\;let\;\;\;k = n-n_0</math>
  
= <math>\sum_{k=-\infty}^{\infty}x[k]z^{-k-n_0} = z^(-n_0)\sum_{k=-\infty}^{\infty}x[k]z^{-k}</math>
+
= <math>\sum_{k=-\infty}^{\infty}x[k]z^{-k-n_0} = z^{-n_0}\sum_{k=-\infty}^{\infty}x[k]z^{-k}</math>
  
= <math>z^{n_0}X(Z)</math>
+
= <math>z^{-n_0}X(Z)</math>

Latest revision as of 14:22, 21 September 2009

Back to ECE438 course page


Linearity

$ \mathfrak{Z}\big\{ax[n]+by[n]\big\}=a\mathfrak{Z}\big\{x[n]\big\}+b\mathfrak{Z}\big\{y[n]\big\}\;\;\;\;\;\forall a,b \in \mathbb{C} \;\;\;, \forall signals \; x[n],y[n] $


if

  $ \mathfrak{Z}\big\{x[n]\big\} = X(Z)\;with\;ROC = R_1 $
  $ \mathfrak{Z}\big\{y[n]\big\} = Y(Z)\;with\;ROC = R_2 $

then

  $ ax[n]+bx[n]\longrightarrow aX(Z)+bY(Z)\;\;\;with\;ROC = R_1 \cap R_2 $


Time Shifting

$ \mathfrak{Z}\big\{x[n-n_0]\big\} = z^{-n_0}\mathfrak{Z}\big\{x[n]\big\}\;same\;ROC\;as\;x[n] $


Proof: let $ n_o $ be a finite integer

$ \mathfrak{Z}\big\{x[n-n_0]\big\}=\sum_{n=-\infty}^{\infty}x[n-n_0]z^{-n}\;\;\;let\;\;\;k = n-n_0 $

= $ \sum_{k=-\infty}^{\infty}x[k]z^{-k-n_0} = z^{-n_0}\sum_{k=-\infty}^{\infty}x[k]z^{-k} $

= $ z^{-n_0}X(Z) $

Alumni Liaison

Recent Math PhD now doing a post-doctorate at UC Riverside.

Kuei-Nuan Lin