Line 18: Line 18:
 
==Hence,==
 
==Hence,==
  
<math>\displaystyle\delta(\omega)=\delta(\frac{f}{2\pi})=2\pi\delta(f)\;\;\;\;\;\;\;\;Note: Not a direct plug and chug. Will explain later.. that or I'm wrong :)</math>
+
<math>\displaystyle\delta(\omega)=\delta(\frac{f}{2\pi})=2\pi\delta(f)\;\;\;\;\;\;\;\;</math>Note: Not a direct plug and chug. Will explain later.. that or I'm wrong :)
  
 
==Which also means that..==
 
==Which also means that..==

Revision as of 08:14, 20 September 2009

Back to ECE438 course page

Scaling of the Dirac Delta (Impulse Function)

$ \displaystyle\delta(\alpha f)=\frac{1}{\alpha}\delta(f)\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;for\;\;\alpha>0 $

Mini Proof

$ \int_{-\infty}^{\infty}\delta(x)dx = 1 $

$ \displaystyle Let\;\;\;y=\alpha x\;\;\;\;\;\;\;\;\;\;\;\;\;dx=\frac{dy}{\alpha} $

$ \displaystyle\int_{-\infty}^{\infty}\delta(\alpha x)dx=\int_{-\infty}^{\infty}\delta(y)\frac{dy}{\alpha}=\frac{1}{\alpha} $

Hence,

$ \displaystyle\delta(\omega)=\delta(\frac{f}{2\pi})=2\pi\delta(f)\;\;\;\;\;\;\;\; $Note: Not a direct plug and chug. Will explain later.. that or I'm wrong :)

Which also means that..

$ P_T(f)=\frac{1}{T_s}\sum_{n=-\infty}^{\infty}\delta(f-\frac{n}{T_s}) $

$ P_T(\omega)=\frac{2\pi}{T_s}\sum_{n=-\infty}^{\infty}\delta(w-n\frac{2\pi}{T_ s}) $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood