(New page: Back to ECE438 course page) |
|||
Line 1: | Line 1: | ||
[[ECE438_(BoutinFall2009)|Back to ECE438 course page]] | [[ECE438_(BoutinFall2009)|Back to ECE438 course page]] | ||
+ | |||
+ | ==Scaling of the Dirac Delta (Impulse Function)== | ||
+ | <math>\displaystyle\delta(\alpha | ||
+ | |||
+ | f)=\frac{1}{\alpha}\delta(f)\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;for\;\;\alpha>0</math> | ||
+ | |||
+ | ==Mini Proof== | ||
+ | |||
+ | <math>\int_{-\infty}^{\infty}\delta(x)dx = 1</math> | ||
+ | |||
+ | <math>\displaystyle Let\;\;\;y=\alpha x\;\;\;\;\;\;\;\;\;\;\;\;\;dx=\frac{dy}{\alpha}</math> | ||
+ | |||
+ | |||
+ | |||
+ | <math>\displaystyle\int_{-\infty}^{\infty}\delta(\alpha | ||
+ | |||
+ | x)dx=\int_{-\infty}^{\infty}\delta(y)\frac{dy}{\alpha}=\frac{1}{\alpha}</math> | ||
+ | |||
+ | ==Hence,== | ||
+ | |||
+ | <math>\displaystyle\delta(\omega)=\delta(\frac{f}{2\pi})=2\pi\delta(f)</math> | ||
+ | |||
+ | ==Which also means that..== | ||
+ | |||
+ | <math>P_T(f)=\frac{1}{T_s}\sum_{n=-\infty}^{\infty}\delta(f-\frac{n}{T_s})</math> | ||
+ | |||
+ | <math>P_T(\omega)=\frac{2\pi}{T_s}\sum_{n=-\infty}^{\infty}\delta(w-n\frac{2\pi}{T_ | ||
+ | |||
+ | s})</math> |
Revision as of 08:12, 20 September 2009
Contents
Scaling of the Dirac Delta (Impulse Function)
$ \displaystyle\delta(\alpha f)=\frac{1}{\alpha}\delta(f)\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;for\;\;\alpha>0 $
Mini Proof
$ \int_{-\infty}^{\infty}\delta(x)dx = 1 $
$ \displaystyle Let\;\;\;y=\alpha x\;\;\;\;\;\;\;\;\;\;\;\;\;dx=\frac{dy}{\alpha} $
$ \displaystyle\int_{-\infty}^{\infty}\delta(\alpha x)dx=\int_{-\infty}^{\infty}\delta(y)\frac{dy}{\alpha}=\frac{1}{\alpha} $
Hence,
$ \displaystyle\delta(\omega)=\delta(\frac{f}{2\pi})=2\pi\delta(f) $
Which also means that..
$ P_T(f)=\frac{1}{T_s}\sum_{n=-\infty}^{\infty}\delta(f-\frac{n}{T_s}) $
$ P_T(\omega)=\frac{2\pi}{T_s}\sum_{n=-\infty}^{\infty}\delta(w-n\frac{2\pi}{T_ s}) $