Line 1: Line 1:
 +
[[ECE438_(BoutinFall2009)|Back to ECE438 course page]]
 +
 
==Scaling of the Dirac Delta (Impulse Function)==
 
==Scaling of the Dirac Delta (Impulse Function)==
 
<math>\displaystyle\delta(\alpha f)=\frac{1}{\alpha}\delta(f)</math> <math>\textstyle{    for  }\alpha>0</math>
 
<math>\displaystyle\delta(\alpha f)=\frac{1}{\alpha}\delta(f)</math> <math>\textstyle{    for  }\alpha>0</math>
Line 11: Line 13:
  
 
<math>\displaystyle\int_{-\infty}^{\infty}\delta(\alpha x)dx=\int_{-\infty}^{\infty}\delta(y)\frac{dy}{\alpha}=\frac{1}{\alpha}</math>
 
<math>\displaystyle\int_{-\infty}^{\infty}\delta(\alpha x)dx=\int_{-\infty}^{\infty}\delta(y)\frac{dy}{\alpha}=\frac{1}{\alpha}</math>
 +
 +
[[ECE438_(BoutinFall2009)|Back to ECE438 course page]]

Revision as of 07:28, 20 September 2009

Back to ECE438 course page

Scaling of the Dirac Delta (Impulse Function)

$ \displaystyle\delta(\alpha f)=\frac{1}{\alpha}\delta(f) $ $ \textstyle{ for }\alpha>0 $

Mini Proof

$ \int_{-\infty}^{\infty}\delta(x)dx = 1 $

Let $ \displaystyle y=\alpha x $

$ dx=\frac{dy}{\alpha} $

$ \displaystyle\int_{-\infty}^{\infty}\delta(\alpha x)dx=\int_{-\infty}^{\infty}\delta(y)\frac{dy}{\alpha}=\frac{1}{\alpha} $

Back to ECE438 course page

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett