(New page: ==Scaling of the Dirac Delta (Impulse Function)== <math>\displaystyle\delta(\alpha f)=\frac{1}{\alpha}\delta(f)</math> for <math>\alpha>0</math> '''Mini Proof''' <math>\int_{-\infty}^{\i...) |
|||
Line 1: | Line 1: | ||
==Scaling of the Dirac Delta (Impulse Function)== | ==Scaling of the Dirac Delta (Impulse Function)== | ||
− | <math>\displaystyle\delta(\alpha f)=\frac{1}{\alpha}\delta(f)</math> | + | <math>\displaystyle\delta(\alpha f)=\frac{1}{\alpha}\delta(f)</math> <math>\textstyle{ for }\alpha>0</math> |
'''Mini Proof''' | '''Mini Proof''' |
Revision as of 07:26, 20 September 2009
Scaling of the Dirac Delta (Impulse Function)
$ \displaystyle\delta(\alpha f)=\frac{1}{\alpha}\delta(f) $ $ \textstyle{ for }\alpha>0 $
Mini Proof
$ \int_{-\infty}^{\infty}\delta(x)dx = 1 $
Let $ \displaystyle y=\alpha x $
$ dx=\frac{dy}{\alpha} $
$ \displaystyle\int_{-\infty}^{\infty}\delta(\alpha x)dx=\int_{-\infty}^{\infty}\delta(y)\frac{dy}{\alpha}=frac{1}{\alpha} $