(New page: Synchronous Demodulation -> Assume that wc > wm and consider the signal: y(t)=x(t)coswct The original signal can be recovered by modulating y(t) with the same sinusoidal ca...)
 
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
 
Synchronous Demodulation ->  
 
Synchronous Demodulation ->  
   Assume that wc > wm and consider the signal:  
+
   Assume that <math>w_c > w_m </math> and consider the signal:  
       y(t)=x(t)coswct  
+
       y(t)=x(t)<math>cosw_c t</math>  
 
   The original signal can be recovered by modulating y(t) with the same sinusoidal carrier and applying a low pass filter to the  
 
   The original signal can be recovered by modulating y(t) with the same sinusoidal carrier and applying a low pass filter to the  
 
   result.   
 
   result.   
       w(t)=y(t)coswct
+
       w(t)=y(t)<math>cosw_c</math>t
           =x(t)cos^2 wct
+
           =x(t)<math>cos^2 w_c</math>t
 +
  Use the trig identity 
 +
      <math>cos^2 w_c</math>t=(1/2)+(1/2)<math>2cosw_c</math>t
 +
  We can rewrite as
 +
      w(t)=(1/2)x(t)=(1/2)x(t)<math>2cosw_c</math>t
 +
  In this process the demodulating signal is assumed to be synchronized in phase with the modulating signal.

Latest revision as of 18:18, 29 July 2009

Synchronous Demodulation ->

  Assume that $ w_c > w_m  $ and consider the signal: 
     y(t)=x(t)$ cosw_c t $  
  The original signal can be recovered by modulating y(t) with the same sinusoidal carrier and applying a low pass filter to the 
  result.  
     w(t)=y(t)$ cosw_c $t 
         =x(t)$ cos^2 w_c $t
  Use the trig identity   
     $ cos^2 w_c $t=(1/2)+(1/2)$ 2cosw_c $t 
  We can rewrite as 
     w(t)=(1/2)x(t)=(1/2)x(t)$ 2cosw_c $t 
  In this process the demodulating signal is assumed to be synchronized in phase with the modulating signal.

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal