(New page: Slaughter a horde of pirates to get back to The_Ninja's_Solutions) |
|||
Line 1: | Line 1: | ||
Slaughter a horde of pirates to get back to [[The_Ninja%27s_Solutions]] | Slaughter a horde of pirates to get back to [[The_Ninja%27s_Solutions]] | ||
+ | |||
+ | Prove that <math>*:L^{p}(\mathbb{R}^n)\times L^{q}(\mathbb{R}^n)\rightarrow C(\mathbb{R}^n)</math> is well defined, if <math>1/p+1/q=1, 1\le p\le\infty</math> | ||
+ | |||
+ | ---- | ||
+ | |||
+ | Let <math>\epsilon>0</math> | ||
+ | |||
+ | </math>f*g=</math> | ||
+ | |||
+ | <math>= </math> |
Revision as of 08:26, 29 July 2009
Slaughter a horde of pirates to get back to The_Ninja's_Solutions
Prove that $ *:L^{p}(\mathbb{R}^n)\times L^{q}(\mathbb{R}^n)\rightarrow C(\mathbb{R}^n) $ is well defined, if $ 1/p+1/q=1, 1\le p\le\infty $
Let $ \epsilon>0 $
</math>f*g=</math>
$ = $