(New page: Slaughter a horde of pirates to get back to The_Ninja's_Solutions)
 
Line 1: Line 1:
 
Slaughter a horde of pirates to get back to [[The_Ninja%27s_Solutions]]
 
Slaughter a horde of pirates to get back to [[The_Ninja%27s_Solutions]]
 +
 +
Prove that <math>*:L^{p}(\mathbb{R}^n)\times L^{q}(\mathbb{R}^n)\rightarrow C(\mathbb{R}^n)</math> is well defined, if <math>1/p+1/q=1, 1\le p\le\infty</math>
 +
 +
----
 +
 +
Let <math>\epsilon>0</math>
 +
 +
</math>f*g=</math>
 +
 +
<math>= </math>

Revision as of 08:26, 29 July 2009

Slaughter a horde of pirates to get back to The_Ninja's_Solutions

Prove that $ *:L^{p}(\mathbb{R}^n)\times L^{q}(\mathbb{R}^n)\rightarrow C(\mathbb{R}^n) $ is well defined, if $ 1/p+1/q=1, 1\le p\le\infty $


Let $ \epsilon>0 $

</math>f*g=</math>

$ = $

Alumni Liaison

BSEE 2004, current Ph.D. student researching signal and image processing.

Landis Huffman