(4 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | <math>j = \ | + | Euler's identity |
− | <math> e^{ | + | |
+ | <math> e^{j \pi} + 1 = 0, \,\! </math> | ||
+ | |||
+ | Euler's formula | ||
+ | |||
+ | <math> e^{jx} = \cos x + j \sin x \,\! </math> | ||
+ | |||
+ | <math> \cos x = \mathrm{Re}\{e^{jx}\} ={e^{jx} + e^{-jx} \over 2}</math> | ||
+ | |||
+ | <math> \sin x = \mathrm{Im}\{e^{jx}\} ={e^{jx} - e^{-jx} \over 2i}. </math> | ||
+ | |||
+ | <math> \cos(x) = {e^{-jx} + e^{jx} \over 2}</math> | ||
+ | |||
+ | <math> \sin(x) = {e^{-jx} - e^{jx} \over 2j} </math> |
Latest revision as of 19:40, 22 July 2009
Euler's identity
$ e^{j \pi} + 1 = 0, \,\! $
Euler's formula
$ e^{jx} = \cos x + j \sin x \,\! $
$ \cos x = \mathrm{Re}\{e^{jx}\} ={e^{jx} + e^{-jx} \over 2} $
$ \sin x = \mathrm{Im}\{e^{jx}\} ={e^{jx} - e^{-jx} \over 2i}. $
$ \cos(x) = {e^{-jx} + e^{jx} \over 2} $
$ \sin(x) = {e^{-jx} - e^{jx} \over 2j} $