(New page: For example, x(t)= cosw1t + cosw2t, determine the fundamental period and frequency of the signal. T1 = 2<math>pi</math>/w1, T2=2<math>pi</math>/w2)
 
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
For example, x(t)= cosw1t + cosw2t, determine the fundamental period and frequency of the signal.
 
For example, x(t)= cosw1t + cosw2t, determine the fundamental period and frequency of the signal.
  
T1 = 2<math>pi</math>/w1, T2=2<math>pi</math>/w2
+
T1 = 2<math>\pi</math>/w1, T2=2<math>\pi</math>/w2.
 +
 
 +
period T of x(t) must be s.t. T*w1 = N*2<math>\pi</math>
 +
 
 +
or  T*w2 = M*2<math>\pi</math> (both N and M are integers)
 +
 
 +
if T1/T2 is irrational, x(t) is non-periodic.
 +
 
 +
else if T1/T2 = N/M, s.t. M*T1 = N*T2
 +
 
 +
x(t) is periodic with fundamental period T = M*T1 = N*T2
 +
 
 +
and fundamental frequency w = 2<math>\pi</math>/T

Latest revision as of 16:08, 22 July 2009

For example, x(t)= cosw1t + cosw2t, determine the fundamental period and frequency of the signal.

T1 = 2$ \pi $/w1, T2=2$ \pi $/w2.

period T of x(t) must be s.t. T*w1 = N*2$ \pi $

or T*w2 = M*2$ \pi $ (both N and M are integers)

if T1/T2 is irrational, x(t) is non-periodic.

else if T1/T2 = N/M, s.t. M*T1 = N*T2

x(t) is periodic with fundamental period T = M*T1 = N*T2

and fundamental frequency w = 2$ \pi $/T

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood