Line 33: | Line 33: | ||
: <math> \cos wt = \frac{e^{j w}}{2} + \frac{e^{-j w}}{2} \,\!</math> | : <math> \cos wt = \frac{e^{j w}}{2} + \frac{e^{-j w}}{2} \,\!</math> | ||
and | and | ||
− | : <math> \sin wt = \frac{e^{j w}}{ | + | : <math> \sin wt = \frac{e^{j w}}{2j} - \frac{e^{-j w}}{2j} \,\!</math> |
--[[User:Freya|Freya]] 15:04, 20 July 2009 (UTC) | --[[User:Freya|Freya]] 15:04, 20 July 2009 (UTC) | ||
Revision as of 10:10, 20 July 2009
Adam Frey's Euler Identity Summary
The identity is a special case of Euler's formula from complex analysis, which states that where j = i = $ \sqrt{-1} $
- $ e^{jx} = \cos x + j \sin x \,\! $
for any real number x. (Note that sine and cosine should be in radians)
In particular,
- $ e^{j \pi} = \cos \pi + j \sin \pi.\,\! $
We know from trig identities that:
- $ \cos \pi = -1 \, \! $
and
- $ \sin \pi = 0,\,\! $
which results in
- $ e^{j \pi} = -1,\,\! $
which gives the identity
- $ e^{j \pi} +1 = 0.\,\! $
Also useful is the relationship in splitting sine and cosine is where
- $ \cos wt = \frac{e^{j w}}{2} + \frac{e^{-j w}}{2} \,\! $
and
- $ \sin wt = \frac{e^{j w}}{2j} - \frac{e^{-j w}}{2j} \,\! $
--Freya 15:04, 20 July 2009 (UTC)
Back to Exams/Quizzes