(New page: Since <math> f \in L(\mu) </math>, we know that <math> \int_X |f|d\mu < \infty </math>. Let <math>F_{n} \equiv \{|f| > 1/n\}</math>. Then we have <math>\{f \ne 0\} = \cup_{n=1}^\infty F...)
 
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
 +
2. Let <math>(X,\mathcal{F},\mu)</math> be a measure space and <math>f \in L(\mu)</math>.  Show that <math>\{f \ne 0\}</math> is <math>\sigma</math>-finite.
 +
 +
 +
'''[[Solution]]'''
 +
 
Since <math> f \in L(\mu) </math>, we know that <math> \int_X |f|d\mu < \infty </math>.  Let <math>F_{n} \equiv \{|f| > 1/n\}</math>.  Then we have  
 
Since <math> f \in L(\mu) </math>, we know that <math> \int_X |f|d\mu < \infty </math>.  Let <math>F_{n} \equiv \{|f| > 1/n\}</math>.  Then we have  
 
<math>\{f \ne 0\} = \cup_{n=1}^\infty F_n.</math>   
 
<math>\{f \ne 0\} = \cup_{n=1}^\infty F_n.</math>   
  
Clearly all of the <math>F_n</math> must have finite measure, else <math>\int_X |f|d\mu</math> would be infinite.  Thus, <math>\{f \ne 0\}</math> is <math>\sigma</math>-finite.
+
Clearly all of the <math>F_n</math> must have finite measure, else <math> \int_X |f|d\mu </math> would be infinite.  Thus, <math>\{f \ne 0\}</math> is <math>\sigma</math>-finite.
 +
 
 +
--[[User:Damurray|Damurray]] 13:46, 6 July 2009 (UTC)

Latest revision as of 08:46, 6 July 2009

2. Let $ (X,\mathcal{F},\mu) $ be a measure space and $ f \in L(\mu) $. Show that $ \{f \ne 0\} $ is $ \sigma $-finite.


Solution

Since $ f \in L(\mu) $, we know that $ \int_X |f|d\mu < \infty $. Let $ F_{n} \equiv \{|f| > 1/n\} $. Then we have $ \{f \ne 0\} = \cup_{n=1}^\infty F_n. $

Clearly all of the $ F_n $ must have finite measure, else $ \int_X |f|d\mu $ would be infinite. Thus, $ \{f \ne 0\} $ is $ \sigma $-finite.

--Damurray 13:46, 6 July 2009 (UTC)

Alumni Liaison

EISL lab graduate

Mu Qiao