(New page: MA_598R_pweigel_Summer_2009_Lecture_4 4.14) <math>\left(X,\mathcal{F},\mu\right)</math> be a finite measure space, and <math>f</math> a measurable extended real-valued function define...)
 
 
Line 62: Line 62:
  
 
Hence <math> \sum_{k=1}^{\infty}\mu\{|f|\ge k\} \le \int{|f|d\mu} < \infty</math>
 
Hence <math> \sum_{k=1}^{\infty}\mu\{|f|\ge k\} \le \int{|f|d\mu} < \infty</math>
 +
 +
-Ben Bartle

Latest revision as of 17:11, 5 July 2009

MA_598R_pweigel_Summer_2009_Lecture_4

4.14) $ \left(X,\mathcal{F},\mu\right) $ be a finite measure space, and $ f $ a measurable extended real-valued function defined on $ X $. Show that $ f\in L(\mu) $ if and only if

$ \sum_{k=1}^{\infty}{\mu\{\left|f\right|\ge k\}} < \infty $

Solution:

"$ \Leftarrow $"

$ \int{|f|d\mu} = $

$ = \int{\lim_{n\rightarrow\infty}\sum_{k=0}^{n}|f|\mathcal{X}_{\{k\le |f| \le k+1\}}d\mu } $

$ = \lim_{n\rightarrow\infty}\int{\sum_{k=0}^{n}|f|\mathcal{X}_{\{k\le |f| \le k+1\}}d\mu } $ by the Monotone Convergence Theorem

$ = \lim_{n\rightarrow\infty}\sum_{k=0}^{n}\int{|f|\mathcal{X}_{\{k\le |f| \le k+1\}}d\mu } $ because the sum is finite

$ = \sum_{k=0}^{\infty}\int{|f|\mathcal{X}_{\{k\le |f| \le k+1\}}d\mu } $

$ \le \sum_{k=0}^{\infty}\int{(k+1)\mathcal{X}_{\{k\le |f| \le k+1\}}d\mu } $

$ = \sum_{k=0}^{\infty}\left( \int{(k+1)\mathcal{X}_{\{k\le |f| \le k+1\}}d\mu } + \int{(k+1)\mathcal{X}_{\{k+1\le |f|\}}d\mu} - \int{(k+1)\mathcal{X}_{\{k+1\le |f|\}}d\mu} \right) $

$ = \sum_{k=0}^{\infty}\left( \int{(k+1)\mathcal{X}_{\{k\le |f|\}}d\mu } - \int{(k+1)\mathcal{X}_{\{k+1\le |f|\}}d\mu} \right) $

$ = \sum_{k=0}^{\infty}\int{(k+1)\mathcal{X}_{\{k\le |f|\}}d\mu } - \sum_{k=0}^{\infty}\int{(k+1)\mathcal{X}_{\{k+1\le |f|\}}d\mu} $

$ = \sum_{k=0}^{\infty}\int{(k+1)\mathcal{X}_{\{k\le |f|\}}d\mu } - \sum_{k=1}^{\infty}\int{(k)\mathcal{X}_{\{k\le |f|\}}d\mu} $

$ = \int{\mathcal{X}_{\{0\le |f|\}}d\mu } + \sum_{k=1}^{\infty}\int{\mathcal{X}_{\{k\le |f|\}}d\mu} $

$ = \mu(X) + \sum_{k=1}^{\infty}\mu\{|f|\ge k\} $

$ < \infty $

"$ \Rightarrow $"

$ \int{|f|d\mu} = $

$ = \int{\lim_{n\rightarrow\infty}\sum_{k=0}^{n}|f|\mathcal{X}_{\{k\le |f| \le k+1\}}d\mu } $

$ = \lim_{n\rightarrow\infty}\int{\sum_{k=0}^{n}|f|\mathcal{X}_{\{k\le |f| \le k+1\}}d\mu } $ by the Monotone Convergence Theorem

$ = \lim_{n\rightarrow\infty}\sum_{k=0}^{n}\int{|f|\mathcal{X}_{\{k\le |f| \le k+1\}}d\mu } $ because the sum is finite

$ = \sum_{k=0}^{\infty}\int{|f|\mathcal{X}_{\{k\le |f| \le k+1\}}d\mu } $

$ \ge \sum_{k=0}^{\infty}\int{k\mathcal{X}_{\{k\le |f| \le k+1\}}d\mu } $

$ = \sum_{k=0}^{\infty}\left( \int{k\mathcal{X}_{\{k\le |f| \le k+1\}}d\mu } + \int{k\mathcal{X}_{\{k+1\le |f|\}}d\mu} - \int{k\mathcal{X}_{\{k+1\le |f|\}}d\mu} \right) $

$ = \sum_{k=0}^{\infty}\left( \int{k\mathcal{X}_{\{k\le |f|\}}d\mu } - \int{k\mathcal{X}_{\{k+1\le |f|\}}d\mu} \right) $

$ = \sum_{k=0}^{\infty}\int{k\mathcal{X}_{\{k\le |f|\}}d\mu } - \sum_{k=0}^{\infty}\int{k\mathcal{X}_{\{k+1\le |f|\}}d\mu} $

$ = \sum_{k=0}^{\infty}\int{k\mathcal{X}_{\{k\le |f|\}}d\mu } - \sum_{k=1}^{\infty}\int{(k-1)\mathcal{X}_{\{k\le |f|\}}d\mu} $

$ = \int{0\mathcal{X}_{\{0\le |f|\}}d\mu } + \sum_{k=1}^{\infty}\int{\mathcal{X}_{\{k\le |f|\}}d\mu} $

$ = \sum_{k=1}^{\infty}\mu\{|f|\ge k\} $

Hence $ \sum_{k=1}^{\infty}\mu\{|f|\ge k\} \le \int{|f|d\mu} < \infty $

-Ben Bartle

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett