(New page: MA_598R_pweigel_Summer_2009_Lecture_4 <math>\text{Prove that the sum}</math> <math>\sum_{n=0}^{\infty}{\int_{0}^{\pi/2}{\left(1-\sqrt{\sin x}\right)^n\cos x }dx }</math> <math>\text...)
 
Line 1: Line 1:
 
[[MA_598R_pweigel_Summer_2009_Lecture_4]]
 
[[MA_598R_pweigel_Summer_2009_Lecture_4]]
  
<math>\text{Prove that the sum}</math>
+
<math>\text{4.6) Prove that the sum}</math>
  
 
<math>\sum_{n=0}^{\infty}{\int_{0}^{\pi/2}{\left(1-\sqrt{\sin x}\right)^n\cos x }dx }</math>
 
<math>\sum_{n=0}^{\infty}{\int_{0}^{\pi/2}{\left(1-\sqrt{\sin x}\right)^n\cos x }dx }</math>

Revision as of 12:00, 5 July 2009

MA_598R_pweigel_Summer_2009_Lecture_4

$ \text{4.6) Prove that the sum} $

$ \sum_{n=0}^{\infty}{\int_{0}^{\pi/2}{\left(1-\sqrt{\sin x}\right)^n\cos x }dx } $

$ \text{converges to a finite limit, and find its value.} $

$ \text{Solution: } $

$ \sum_{n=0}^{\infty}{\int_{0}^{\pi/2}{\left(1-\sqrt{\sin x}\right)^n\cos x }dx } $

$ = \lim_{ N \rightarrow\infty}{\sum_{n=0}^{N}{\int_{0}^{\pi/2}{\left(1-\sqrt{\sin x}\right)^n\cos x }dx }} \text{ by definition} $

$ = \lim_{ N \rightarrow\infty}{\int_{0}^{\pi/2}{\cos x\sum_{n=0}^{N}{\left(1-\sqrt{\sin x}\right)^n } }dx} \text{ because the sum is finite} $

$ = \int_{0}^{\pi/2}{\cos x\sum_{n=0}^{\infty}{\left(1-\sqrt{\sin x}\right)^n } dx} \text{ by the Monotone Convergence Theorem} $

$ \left(1-\sqrt{\sin x}\right)^n <1 \text{ on } \left(0,\pi/2\right] \text{ so } \cos x \sum_{n=0}^{\infty}{\left(1-\sqrt{\sin x}\right)^n} = \frac{\cos x}{\sqrt{\sin x}} \text{ is finite a.e. on a bounded domain, so the integral exists} $

$ \int_{0}^{\pi/2}{\frac{\cos x}{\sqrt{\sin x}} } dx = \int_{0}^{1}{\frac{1}{\sqrt{x}} } dx = 2 $

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn