(temp)
 
(first submission)
 
Line 1: Line 1:
temp
+
== Causality ==
  
-Ty
+
-----
 +
 
 +
'''Definition:''' A system is causal if and only if the output y(t) at any given time depends on the input x(t) in present and/or past times; so <math>y(a)</math> depends on <math>x(t)</math> where <math>t\le a</math>.
 +
 
 +
'''Side Note:''' All memoryless systems are causal.
 +
 
 +
'''Examples:'''
 +
 
 +
Causal System: <math>y(t)=\frac{5t}{2}u(t-3)</math>
 +
 
 +
This system is causal because it has an output y(t) that depends on an input <math>x(t)=\frac{5t}{2}u(t-3)</math> where x(t) is zero for all values of <math>t\le 0</math>.
 +
 
 +
Non-Causal System: <math>y(t)=\frac{e^{-2t}}{3}u(t+2)</math>
 +
 
 +
This system is not causal because it has an output y(t) that depends on an input <math>x(t)=\frac{e^{-2t}}{3}u(t+2)</math> where x(t) is not zero for all values of <math>t\le 0</math>. The input depends on values of time considered to be in the future => u(t+2).
 +
 
 +
 
 +
-Tylor Thompson

Latest revision as of 16:19, 1 July 2009

Causality


Definition: A system is causal if and only if the output y(t) at any given time depends on the input x(t) in present and/or past times; so $ y(a) $ depends on $ x(t) $ where $ t\le a $.

Side Note: All memoryless systems are causal.

Examples:

Causal System: $ y(t)=\frac{5t}{2}u(t-3) $

This system is causal because it has an output y(t) that depends on an input $ x(t)=\frac{5t}{2}u(t-3) $ where x(t) is zero for all values of $ t\le 0 $.

Non-Causal System: $ y(t)=\frac{e^{-2t}}{3}u(t+2) $

This system is not causal because it has an output y(t) that depends on an input $ x(t)=\frac{e^{-2t}}{3}u(t+2) $ where x(t) is not zero for all values of $ t\le 0 $. The input depends on values of time considered to be in the future => u(t+2).


-Tylor Thompson

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett