(New page: <math>x(t)=\sqrt(t)</math> Compute <math>E\infty</math> and <math>P\infty</math> <math>E\infty=\int_{-\infty}^\infty |x(t)|^2dt</math> <math>E\infty=\int_{-\infty}^\infty |\sqrt(t)|^2d...)
 
 
Line 11: Line 11:
 
<math>E\infty=\int_{-\infty}^0 tdt +\int_{0}^\infty tdt</math>
 
<math>E\infty=\int_{-\infty}^0 tdt +\int_{0}^\infty tdt</math>
  
<math>E\Infty=0.5 t^2| _-{\infty}^0 + 0.5 t^2 _{0}^\infty </math>
+
<math>E\infty=0.5 t^2|_{-\infty}^0 + 0.5t^2|_{0}^\infty </math>
  
 
<math>E\infty=\infty</math>
 
<math>E\infty=\infty</math>
 +
 +
<math>P\infty=\lim_{T->\infty}1/(2T)\int_{-T}^T |x(t)|^2dt</math>
 +
 +
<math>P\infty=\lim_{T->\infty}1/(2T)\int_{-T}^T |\sqrt(t)|^2dt</math>
 +
 +
<math>P\infty=\lim_{T->\infty}1/(2T)*0.5t^2|_{-T}^T</math>
 +
 +
<math>P\infty=\lim_{T->\infty}1/(2T)*(1/2(-T)^2+1/2(T)^2)</math>
 +
 +
<math>P\infty=\lim_{T->\infty}T/4</math>
 +
 +
<math>P\infty=\infty</math>

Latest revision as of 18:44, 17 June 2009

$ x(t)=\sqrt(t) $

Compute $ E\infty $ and $ P\infty $

$ E\infty=\int_{-\infty}^\infty |x(t)|^2dt $

$ E\infty=\int_{-\infty}^\infty |\sqrt(t)|^2dt $

$ E\infty=\int_{-\infty}^\infty tdt $

$ E\infty=\int_{-\infty}^0 tdt +\int_{0}^\infty tdt $

$ E\infty=0.5 t^2|_{-\infty}^0 + 0.5t^2|_{0}^\infty $

$ E\infty=\infty $

$ P\infty=\lim_{T->\infty}1/(2T)\int_{-T}^T |x(t)|^2dt $

$ P\infty=\lim_{T->\infty}1/(2T)\int_{-T}^T |\sqrt(t)|^2dt $

$ P\infty=\lim_{T->\infty}1/(2T)*0.5t^2|_{-T}^T $

$ P\infty=\lim_{T->\infty}1/(2T)*(1/2(-T)^2+1/2(T)^2) $

$ P\infty=\lim_{T->\infty}T/4 $

$ P\infty=\infty $

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett