Line 1: Line 1:
 
== If <math>E_\infty</math> is ''finite'', then <math>P_\infty</math> is ''zero'' ==
 
== If <math>E_\infty</math> is ''finite'', then <math>P_\infty</math> is ''zero'' ==
  
<math>P_\infty\equiv\lim_{T\to\infty}\frac{1}{2T}\int_{-T}^T|x(t)|dt</math>
+
----
 +
 
 +
<math>P_\infty\equiv\lim_{T\to\infty}\frac{1}{2T}\int_{-T}^T|x(t)|^2dt</math>
 +
 
 +
<math>P_\infty\equiv(\lim_{T\to\infty}\frac{1}{2T})*(\lim_{T\to\infty}\int_{-T}^T|x(t)|^2dt)</math>
 +
 
 +
Because <math>E_\infty\equiv\lim_{T\to\infty}\int_{-T}^T|x(t)|^2dt</math>, because of substitution it follows that
 +
 
 +
<math>P_\infty=(\lim_{T\to\infty}\frac{1}{2T})*E_\infty</math>
 +
 
 +
<math>P_\infty=(\lim_{T\to\infty}\frac{1}{2T})*(\lim_{T\to\infty}E_\infty)</math>
 +
 
 +
<math>P_\infty=\lim_{T\to\infty}\frac{E_\infty}{2T}</math>
 +
 
 +
This limit will always evaluate to zero as long as <math>E_\infty</math> is finite.
 +
 
 +
If <math>E_\infty</math> is ''finite'', then <math>P_\infty</math> is ''zero''

Revision as of 08:53, 17 June 2009

If $ E_\infty $ is finite, then $ P_\infty $ is zero


$ P_\infty\equiv\lim_{T\to\infty}\frac{1}{2T}\int_{-T}^T|x(t)|^2dt $

$ P_\infty\equiv(\lim_{T\to\infty}\frac{1}{2T})*(\lim_{T\to\infty}\int_{-T}^T|x(t)|^2dt) $

Because $ E_\infty\equiv\lim_{T\to\infty}\int_{-T}^T|x(t)|^2dt $, because of substitution it follows that

$ P_\infty=(\lim_{T\to\infty}\frac{1}{2T})*E_\infty $

$ P_\infty=(\lim_{T\to\infty}\frac{1}{2T})*(\lim_{T\to\infty}E_\infty) $

$ P_\infty=\lim_{T\to\infty}\frac{E_\infty}{2T} $

This limit will always evaluate to zero as long as $ E_\infty $ is finite.

If $ E_\infty $ is finite, then $ P_\infty $ is zero

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal